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FOREWORD 

Travelers’ choices are central to the performance of a transportation system, but little is known 
about what influences such choices or the impact they have on system performance. When 
selecting a transportation management strategy, a transportation management center operator must 
understand and anticipate how travelers will respond (i.e., will they stay on the same routes or 
divert; will they decide to walk, bike, or take a bus or train instead of driving; will they leave 
earlier or later, etc.).  

The operator must know the potential benefits of alternative overall strategies (e.g., variable 
pricing or information on dynamic message signs) as well as how to handle day-to-day 
operations by implementing strategies to provide effective responses to particular events. The 
operator must also account for non-network, predisposing factors that influence travelers’ 
choices. Such factors, including land use, population density, and walkability, are generally out 
of the control of the network manager, and their influence may not be intuitively obvious. 

This report addresses the current state of the practice, identifies gaps in knowledge regarding 
traveler choices, and provides six case studies on how to improve current models. This report 
provides a comprehensive conceptual framework that incorporates traveler behavior and the 
impact on network performance for demand-side and supply-side measures. This report will be a 
resource for both traveler choice researchers and organizations considering transportation 
management strategies that influence traveler choice. 

 

  
 
 Joseph I. Peters 
 Director, Office of Operations 
 Research and Development 

Notice 
This document is disseminated under the sponsorship of the U.S. Department of Transportation 
in the interest of information exchange. The U.S. Government assumes no liability for the use  
of the information contained in this document. This report does not constitute a standard, 
specification, or regulation. 

The U.S. Government does not endorse products or manufacturers. Trademarks or 
manufacturers’ names appear in this report only because they are considered essential to the 
objective of the document. 

Quality Assurance Statement 
The Federal Highway Administration (FHWA) provides high-quality information to serve 
Government, industry, and the public in a manner that promotes public understanding. Standards 
and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its 
information. FHWA periodically reviews quality issues and adjusts its programs and processes to 
ensure continuous quality improvement. 



TECHNICAL REPORT DOCUMENTATION PAGE 
1. Report No. 
FHWA-HRT-13-097 

2. Government Accession No. 
 

3. Recipient’s Catalog No. 
 

4. Title and Subtitle 
Analysis of Network and Non-Network Factors on Traveler Choice  
Toward Improving Modeling Accuracy for Better Transportation  
Decisionmaking 

5. Report Date 
September 2014 
6. Performing Organization Code 
 

7. Author(s) 
Hani S. Mahmassani, Charlotte Frei, Andreas Frei, Joseph Story,  
Lewison Lem, Alireza Talebpour, Ying Chen, Ali Zockaie, Meead Saberi, 
Hooram Halat, and Robert Haas 

8. Performing Organization Report No. 
 

9. Performing Organization Name and Address 
SAIC, M/S E-12-3,  
8301 Greensboro Drive, McLean, VA 22102 

Northwestern University 
The Transportation Center 
600 Foster Street, Evanston, IL 60208-4055 

10. Work Unit No. (TRAIS) 
 
11. Contract or Grant No. 
DTFH61-06-D-00005, Task Order T-11-013 

12. Sponsoring Agency Name and Address 
U.S. Department of Transportation 
Federal Highway Administration 
1200 New Jersey Avenue, SE 
Washington, DC 20590 

13. Type of Report and Period Covered 
Final Report; July 2011–April 2013 

14. Sponsoring Agency Code 
 

15. Supplementary Notes 
The Contracting Officer’s Technical Representative (COTR) was Taylor Lochrane, HRDO-20. 
16. Abstract 
The need to reduce congestion, enhance safety, and make the U.S. transportation system and cities more sustainable has given 
rise to various programs, technologies, and policies. The effectiveness of these interventions depends on how users eventually 
respond and, in some instances, modify their travel behavior. While significant advances have taken place over the past 50 years 
in the field of travel behavior research and travel demand forecasting, the ability to reliably predict the direction and magnitude 
of behavioral responses to various network and non-network factors and interventions remains limited. Many experts have 
called for better data collection and analysis methods and better integration of behavior models with supply analysis tools.  

This report provides a synthesis of the state of knowledge in travel behavior research and showcases how to improve current 
models with relevant behavior realism through six case studies. These case studies range from long-term policy interventions 
(e.g., urban design policy affecting land use and neighborhood walkability), to short-term en-route interventions (e.g., traveler 
information systems for weather-responsive system management). The case studies also include interventions aimed at 
environmental as well as congestion avoidance objectives. The applications provide an enhanced capability to capture traveler 
choices in both the main evaluation tools as well as in supporting the design process actively. This multifaceted research 
initiative cuts across several Federal Highway Administration (FHWA) programs such as the Office of Planning, Environment, 
and Realty; Office of Operations; Office of Safety; and Office of Research, Development, and Technology. This study will 
facilitate implementation of a balanced, cross-cutting effort to better understand the topic of traveler choice, and builds on 
current activities related to modeling and analysis across FHWA, professional associations, and academia. 
17. Key Words 
Behavior models, Demand modeling, Weather-responsive traffic 
management (WRTM), Traffic estimation and prediction, 
Weather and traffic analysis, Dynamic traffic assignment, 
Microsimulation 

18. Distribution Statement 
No restrictions. This document is available to the public 
through the National Technical Information Service, 
Springfield, VA 22161 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
224 

22. Price 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



 

 

 SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2
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ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2
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lbf poundforce   4.45    newtons N 
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mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
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m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
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cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003) 
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EXECUTIVE SUMMARY 

This study, collaboratively identified and prioritized by Federal Highway Administration 
(FHWA) Analysis, Modeling, and Simulation (AMS) experts from across the agency during 
three AMS research symposia, focuses on identifying accurate traveler choice data in network 
and non-network conditions. It seeks to address the important gap in modeling capability to 
support initiatives aimed at improving traffic conditions, system safety, and sustainability by 
targeting user choices before and during travel. The traveler choice focus area targets travelers’ 
higher-level, predictive, strategic choices influenced by a range of variables such as travel time 
reliability; congestion (recurrent and non-recurrent); environmental factors such as weather that 
affects both system performance as well as activity engagement opportunities, availability, and 
accessibility to alternative modes; quality of the walking environment; and measures such as 
pricing, information supply, and dynamic traffic management. 

A comprehensive conceptual framework was articulated to highlight the principal behavior 
dimensions and how these interrelate with network performance to determine the impact and 
effectiveness of a wide range of demand-side and supply-side measures. Because no single 
modeling platform can have the scale, appropriate level of detail, and focus to address all 
questions and interventions, this study demonstrates improvements in modeling capability 
through selected case study applications. For each case study, specific modeling tools were 
elaborated by integrating traveler choice models in system simulation tools and applied to 
evaluate the effectiveness of the relevant interventions. 

The case studies range from long-term policy influences of non-network interventions (namely 
walkability and crime) on mode choice to short-term en-route behavior of speed compliance as 
part of intelligent network flow optimization (INFLO) speed harmonization measures. All cases 
model and treat individual behavior in a completely disaggregated manner. However, depending 
on the focus of the intervention, scale of application, and resulting size of the problem, the case 
study models range from macroscopic to microscopic representation of the system. Six case 
studies were developed: (1) a medium-to-long-term application of urban design policy and  
non-network interventions, (2) active transportation and demand management (ATDM) with  
an emphasis on the role of non-network factors and urban policies in promoting active 
transportation and the use of bicycles as an alternative mode, (3) an exploratory Applications for 
the Environment: Real-Time Information Synthesis (AERIS)-related agent-based model of social 
networks and their influence on green attitudes, (4) a second AERIS case study using a 
microscopic traffic behavior model to evaluate the emissions benefits of an intelligent network 
flow application of speed harmonization in a connected vehicle environment, (5) weather 
responsive advanced traffic and demand management, demonstrating integration of traveler 
choices are integrated in a mesoscopic network wide dynamic traffic assignment (DTA) model 
using the Chicago, IL, network, and (6) an integrated corridor management (ICM) case study 
focused on characterizing travel adjustments using loop detector flow data from an integrated 
corridor managed site in the Seattle, WA, area. 

This multifaceted research initiative cuts across several FHWA programs such as the Office of 
Planning, Environment, and Realty; Office of Operations; Office of Safety; and the Office of 
Research, Development, and Technology. This study will facilitate the implementation of a 
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balanced, cross-cutting effort to better understand traveler choice and builds on current activities 
related to modeling and analysis across FHWA, professional associations, and academia.  
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

Transportation network flows and the associated performance of these systems are largely  
the result of choices made by travelers—choices of where to live and work; which activities  
to engage in and with whom; and where, when, by what mode to get there and along which  
path. These choices reflect travelers’ activity patterns (i.e., work and residence location, 
mandatory and discretionary activities, etc.) that motivate their desire to travel, situational  
and environmental variables (e.g., weather), as well as attributes of the transportation system, 
which determine the users’ experienced service levels. In addition to their own experience of  
the system’s attributes, particularly congestion and reliability, travelers are influenced by the 
information they obtain or otherwise receive about system conditions as well as various controls 
such as toll prices, access limitations, dynamic control, and other measures. 

Researchers’ understanding of traveler choice behavior in transportation systems and the 
approaches used to capture its outcomes has undergone several paradigm shifts over the past  
50 years, often through the involvement of different disciplinary perspectives. From aggregate 
models concerned primarily with total travel between traffic zones, to disaggregate models of 
household travel decisions, to the current interest in activity-based models that view travel 
choices in the context of the activity engagement decisions of individuals and households, the 
field has expanded, evolved, and matured considerably. Yet, while sociologists, geographers, and 
psychologists have provided valuable insights into many aspects of what people do as well as 
where and why they do it, the ability to operationally represent traveler choices and use this 
representation for the purpose of predicting how users will respond to various transportation 
system interventions remains rather limited. 

Tools available to support operational analysis and strategic planning of transportation systems 
have reached considerable levels of sophistication in the past two decades. On the supply side, 
microscopic and mesoscopic simulation tools can now be applied to large networks. Most traffic 
microsimulation tools only consider driving decisions such as car following and gap acceptance 
but do not include tactical and strategic dimensions. On the demand side, activity-based models 
for strategic planning purposes are being implemented by several metropolitan planning 
organizations (MPOs). However, these models have generally lacked sensitivity to network 
performance attributes, particularly path-level attributes such as time-varying travel times and 
travel time reliability. As such, they cannot readily be used in the context of operational analysis 
tools to capture user responses to traveler information and traffic control measures. 

Developments in simulation-based network models have provided a suitable platform for 
integrating user choices in operational analysis tools, especially with regard to incorporating 
route choice and response to traveler information in modeling traffic flows in highway networks. 
However, the observational/empirical basis for the behavioral models has been limited, often 
relying on small-scale laboratory experiments and stated choice methods to calibrate the models.  

The needs of transportation agencies for methods to evaluate the relative impact of a growing 
array of system management measures and policies involving both aspects of the network as a 
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well as non-network elements underscore the need for improved methods that can integrate a 
richer behavioral basis than is currently available in existing tools. The missing element in many 
situations tends to be in the representation of traveler choices in a network setting and the 
influence of both network and non-network variables on these choices. 

This project is intended to address this gap in modeling capability to support a variety of 
initiatives that seek to improve traffic conditions, system safety, and sustainability by targeting 
user choices before and during travel.  

PROBLEM STATEMENT  

The main goal of this study is to illustrate the missing gaps in capturing traveler choices in the 
methods and tools intended for use in operational analysis and planning of a wide range of 
measures and policies aimed at improving the efficiency, reliability, sustainability, and safety of 
the transportation system. Another main goal is to present and demonstrate ways to overcome 
these gaps with available operational tools through case studies. Traveler choice behavior, 
particularly the dynamics of this behavior in interaction with network and non-network variables, 
is a challenging domain. Developments regarding various aspects of travel and activity behavior 
have multiplied over the past few decades, but researchers’ ability to predict these responses in 
conjunction with system planning and evaluation has not improved commensurately. This need 
is especially critical to the success of emerging program areas such as ATDM, ICM, and AERIS, 
as well as to much needed enhancements to traffic operations management in connection with 
adverse weather (weather-responsive traffic management (WRTM)). Similarly, the ability to 
predict the impact of planning interventions to non-network elements of the urban landscape, 
such as enhancements targeting walkability, neighborhood safety, and sustainable development 
density, is of much interest to the professional planning community.  

OBJECTIVES AND APPROACH 

The main emphasis of this effort is on travelers’ higher-level predictive strategic choices that 
determine when and how they might use the transportation system. These might be influenced by 
a range of variables, including experienced system performance (i.e., recurrent and non-recurrent 
congestion and travel time reliability), environmental factors (i.e., weather that affects both 
system performance and activity engagement opportunities, availability, and accessibility to 
alternative modes), availability and cost of parking, quality of the walking environment, and 
measures such as pricing, information supply, dynamic traffic management, etc. A thorough 
understanding of the determinants of travel choices and behavior and an operational ability to 
model their dependence on key attributes of the transportation system, network performance, and 
non-network factors will provide a foundation for designing effective interventions to improve 
system performance and for evaluating different policies and options by predicting how users 
will respond to these measures. 

The approach adopted in this study is to provide a high-level discussion of all relevant issues  
in the context of a general, comprehensive framework and then demonstrate the targeted 
implementations of this overall approach through specific case studies. Each case study 
addresses one or more of the programs and policy interventions motivating the overall effort.  
For each case study, the relevant behavioral dimensions were identified, and, when applicable, 
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integrated into a modeling framework that captures the interaction of these dimensions with the 
relevant supply-side elements. Where available, data were compiled to characterize these 
behaviors and, in selected cases, to develop and calibrate new models and specifications. For 
several case studies, the modeling framework developed for that application was applied to 
predict the effect of selected policy interventions and conduct sensitivity tests to various 
underlying behavioral parameters. This approach allowed researchers to address the study 
objectives through specific indepth applications, which, taken collectively, reflect the range of 
questions and interventions that require prediction of user behavioral responses as well as the 
range of methodologies and modeling perspectives in addressing these problems. As such, the 
study contributes to both its methodological and applied objectives.  

In addressing the study objectives, the case studies, associated behavioral models,  
and integration of the models developed in this study are intended to satisfy the  
following requirements: 

• Responsiveness: They must be responsive to the policies/actions under consideration  
and address critical modeling gaps from the standpoint of the success of management 
programs or policy interventions. 

• Data availability: There should be data available for calibration or there should be  
a process for obtaining such data, all the while recognizing the growing array of  
potential technology-enabled sources of data and identifying and using the most  
readily available sources. 

• Implementable: The methods and model inputs discussed are all available and ready  
to implement. 

• Computationally tractable: The computational effort required to apply the developed 
methods in connection with a network analysis methodology is compatible with today’s 
computer capabilities. 

The developed models in this study represent a wide a range of analysis tools and demonstrate 
specific applications of the methods. The developed models also show that there is not one single 
model or tool capable of addressing all questions that arise in conjunction with management 
strategies such as ATDM, ICM, AERIS, or WRTM. In other words, the notion of a “one size fits 
all” condition in terms of modeling capability or resolution is not practical for the range of 
questions involving behavioral responses of travelers. To address this, the developed case studies 
use a range of models to achieve the right balance of detail, accuracy, computational tractability, 
and usefulness for the application under consideration. 

REPORT ORGANIZATION AND STRUCTURE 

This report begins with an overview and conceptual framework that organizes the wide range of 
issues and approaches in modeling traveler choices. The framework structures the discussion and 
leads to identifying the main gaps in terms of current modeling practice versus needs in terms of 
scope of coverage, usable tools, and relevance to the questions of interest. Based on this gap 
analysis, the road map is framed to illustrate how these gaps can be addressed at different levels 
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in detailed case studies. Rather than address gaps in a generic fashion, intended for universal 
applicability but missing some essential aspects of specific applications, the development takes 
place in specific scenarios where methods and models are used and demonstrated. The different 
case study scenarios are ordered by decreasing time frame, with longer-term considerations and 
behavioral adaptations addressed first, progressively leading to short-term, day-to-day, and 
within-day responses of travelers. Some methodologies overlap. As a result, in order to avoid 
duplicate discussion, model discussion is organized to best highlight contrasts in advantages  
and drawbacks. The report organization is as follows: 

• Chapter 1: Describes the study objectives and approach. 

• Chapter 2: Presents a review of the main behavioral dimensions and models used to 
describe and forecast traveler choices in transportation applications. 

• Chapter 3: Describes the overall conceptual framework. It also structures the different 
traveler choice dimensions in time (i.e., short-, medium-, and long-term choices) and 
describes the interface at which different models interact with each other. It also 
delineates the conceptual horizon that is used in each case study to draw the line  
between accuracy needed in a certain application and operational usefulness in a  
practical implementation. 

• Chapter 4: Presents the first case study, which describes a medium-to-long-term 
application of urban design policy and non-network interventions.  

• Chapter 5: Addresses ATDM aspects. Topics include the role of non-network factors 
and urban policies in promoting active transportation, the use of bicycles as an alternative 
travel mode, and the implications for modeling tools and data needed to address these 
questions by planning agencies. 

• Chapter 6: Describes an AERIS study on how to model social networks and their  
influence on green attitudes in an agent-based framework. The implications of 
information diffusion through a social network are discussed.  

• Chapter 7: Presents a second AERIS case study and describes how an intelligent 
network flow application of speed harmonization in a connected vehicle environment 
(part of the INFLO program) can achieve lower emissions. 

• Chapter 8: Includes two case studies within advanced traveler information systems 
(ATIS). The first case study concentrates on WRTM and how traveler choices are 
integrated in mesoscopic network-wide DTA models. It also demonstrates how to achieve 
network service levels under bad weather that are comparable to those prevailing during 
clear weather conditions through demand management strategies. The second case study 
focuses on characterizing travel adjustments using loop detector flow data from an 
integrated corridor managed site in the Seattle, WA, area. 

• Chapter 9: Presents the conclusions, including lessons learned and recommendations for 
next steps needed to advance the state of the art and practice of traveler choice modeling. 
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CHAPTER 2. TRAVELER BEHAVIOR OVERVIEW 

This chapter presents a state-of-the-art overview of previous studies addressing traveler 
decisionmaking. It organizes travel behavior knowledge by decision horizon. At the within-day 
and day-to-day levels, route and departure time choices were the primary focus areas. Travelers’ 
experiences from day to day influence their future decisions, and the line between these daily 
choices and behavioral patterns quickly becomes blurred. For example, a traveler may stop using 
public transportation after a bad experience even if the utility is otherwise perceived as quite 
high. Since mode choice is subject to available modes, this tends to be modeled and studied as a 
behavioral pattern in the time span of weeks or months. Finally, lifestyle and mobility choices 
reflect the self-imposed or otherwise imposed constraints to which travelers are subjected over 
longer time frames. Much research has been conducted within each area to understand how 
various factors influence these choices, but there is less understanding of the mechanisms that 
operate to define these travel habits, patterns, and long-term constraints. These mechanisms and 
how they relate to different levels of traveler decisionmaking are also discussed. 

LONG-TERM LIFESTYLE AND MOBILITY DECISIONS 

This section examines urban form variables and the self-selection phenomenon to understand 
travelers’ lifestyle choices. The influence of added network capacity on travel behavior is briefly 
discussed as it relates to traveler characteristics. 

The effects of price and traveler characteristics on utility are relatively well understood, but 
existing knowledge on attitudes about mobility and lifestyle and how these attitudes are 
manifested in behavior is limited. Besides income, psycho-social attributes and their influence on 
car ownership have been examined.(1) Hiscock et al. and Cullinane found psycho-social benefits 
in car use, especially for young males.(2,3) In these studies, car owners felt car use improves 
prestige, protection, autonomy, and self image. 

For decades, the supply-oriented approach to transportation planning revealed that network 
equilibrium often results in increased travel in response to increased capacity, such that adding 
capacity may only alleviate congestion in the short term. Furthermore, adding freeway capacity 
is thought to induce additional travel. Fujii and Kitamura explored the relationship between 
individuals’ activities and the travel environment to determine whether this is the case for 
commuters between the time they leave work and the time they go to sleep.(4) The authors used 
structural equations to conduct impact analysis of hypothetical freeway lanes in the Osaka-Kobe 
metropolitan area on residents’ time use and travel. The model examined the number of trips 
during this period, the total out-of-home activity and travel durations, the number of home-based 
trip chains, and the total amount of time spent at home after arriving for the first time until going 
to sleep. Their model of travel preferences suggests that older married individuals tend to have a 
lower preference toward in-home and out-of-home activities, meaning they have lower 
preferences toward all activity types. People with higher incomes have large preference 
indicators for both in-home and out-of home activities but more so for out-of-home activities. 
Time use and travel variables are treated as endogenous in this study; therefore, the impacts of 
supply changes cannot be thoroughly addressed. However, the results suggest that additional 
freeway lanes induce little traffic, indicated by only slight increases in number and duration of 
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out-of-home activities. Much of the time savings from added capacity is allocated to  
in-home activities. 

Effect of Transit-Oriented Development (TOD) and Urban Density on Behavior Patterns 
and Long-Term Choices 

Much research on travel behavior and land use interactions consists of aggregate analyses. This 
focus on the relationship between urban form and aggregated travel patterns provides little 
insight into the underlying factors and mechanisms by which urban form influences individual 
choices.(5) Disaggregate analysis of household and individual-level behaviors suggests that 
behavior differences are greater among neighborhoods than among individuals within 
neighborhoods, and attitudes play an important role in decisionmaking. It is necessary to 
understand how urban form shapes choice sets since discrete choice theory is only able to 
illustrate how the factors influence choices within a given choice set.(5) 

Holtzclaw et al. attempted to determine which factors influence home location selection and 
associated transit use the most.(6) Using odometer readings from emissions systems inspections 
in San Francisco, CA; Chicago, IL; and Los Angeles, CA, the authors predicted a household’s 
vehicle miles traveled (VMT) as a function of home-zone density, proximity to jobs, transit 
service and access to jobs by transit, availability of local shopping, and pedestrian and bicycle 
“friendliness” (i.e., the attractiveness of these options as compared to driving). The elasticities 
for vehicle ownership with respect to density for the three cities were -0.33, -0.32, and -0.35, 
respectively. Elasticities for VMT (per capita) with respect to density were -0.35, -0.40, and  
-0.43, respectively. Since residents in these cities have above average access to transit, while  
also noting that the model did not control for parking costs, income, and other relevant variables, 
applying this model across more cities may not yield such results. For example, the model  
does not control for attitudes toward driving and public transit, differences in living, vehicle 
ownership cost, or the cost and quality of transit. These variables differ significantly in most 
major U.S. cities, and attitudes typically exert a strong influence on travel patterns. However, the 
magnitudes are surprisingly similar for three urban areas that differ significantly in terrain and 
climate. One should note that density often acts as a proxy for other urban characteristics. 

Equally important to the understanding of how these factors may reduce VMT is an 
understanding of what factors individuals most prefer in “neo-traditional” developments. In 
Lund’s survey where California residents were asked to identify their top three reasons for 
choosing to live in a TOD, only 33.9 percent cited transit accessibility as a top reason.(7) More 
often, residents preferred type or quality of housing (60.5 percent), cost of housing (54 percent), 
or quality of neighborhood (51.7 percent). Lund also found that residents who listed transit as 
one of their top three reasons were 13 to 40 times more likely to use transit than those who did 
not, suggesting significant effects of self-selection in such developments.(7) This endogeneity is 
discussed further in the next section. 

Residential Self-Selection and Vehicle Ownership 

Researchers have sought to disentangle the impact of travel preferences and self-selection in 
home location choice and how this ultimately impacts differences in observed travel patterns 
across distinct neighborhood designs. Cao et al. suggested that attitudes and socio-demographics 
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are confounding influences in such studies.(8) While definitive conclusions have not emerged, 
general neighborhood design distinctions (e.g., walk-oriented versus auto-oriented, existence of 
bicycle lanes, distance to work, and non-work trip purposes) appear responsible for at least half 
of the observed VMT differences.(8–10) 

For example, surveys by Frank et al. in Atlanta reveal that despite driving preferences, residents 
living in a walkable neighborhood tend to drive far less than those living in auto-oriented 
neighborhoods.(11) The least walkable neighborhoods generated roughly 45.5 mi of travel per 
worker per day, while the most walkable neighborhoods generated only 28.3 mi. Furthermore, 
those who prefer an auto-oriented neighborhood but live in a walkable neighborhood tend to 
drive significantly less (25.7 mi per worker per day) than their counterparts in auto-oriented 
neighborhoods (42 mi) despite their stated preference. Of those who prefer walkable 
neighborhoods, VMT per worker per day average 25.8 and 36.6 mi, respectively, for residents of 
walkable versus auto-centric. Thus, while someone may prefer to live in a different 
neighborhood, it appears that he/she will still conform to the travel opportunities of the home 
neighborhood. It also merits mention that households residing in suburban settings (versus more 
traditional neighborhoods) tend to be older and have more members. As expected (by VMT 
patterns), they also own more vehicles per household member.(12) The neighborhoods in  
Frank et al.’s study had similar densities, though they differed in household size and income.(11) 

More recently, Aditjandra et al. applied dynamic (quasi-longitudinal) structural equation models 
to understand the residential self-selection phenomenon in the United Kingdom.(13) A total of  
219 participants who had moved to their current residence in the last 8 years were asked how 
they drive now compared to before they moved using a five-point scale from “a lot less” to “a lot 
more.” Results suggest that socio-demographic characteristics are the main influence on changes 
in car ownership, but changes in neighborhood characteristics, in particular, safety factors and 
shopping accessibility, had an important influence. This method was demonstrated in the United 
States by Cao et al.(14) The findings from the UK study corroborate with Cao et al.’s study, 
suggesting that controlling for residential self-selection, neighborhood design impacts on  
travel behavior may be similar in different geographical settings despite different planning 
contexts.(13,14) In the United States, car ownership is associated with yard size and availability of 
off-street parking, whereas in the United Kingdom, shopping/facility accessibility and safety of 
residential neighborhoods most influences vehicle ownership. Again, one should note that such 
variables can often proxy for other characteristics. For example, yard size could indicate home 
lot size or that the residence is a single family dwelling unit. 

These proxy issues indicate the need to better understand human interactions and the 
mechanisms that drive behavior. After all, if a family moves, their friends may still live in the old 
neighborhood and exhibit the former travel behavior. As many studies have shown, geography is 
one of the best indicators of frequency and duration of social contact. 

MEDIUM-TERM BEHAVIORAL PATTERNS  

Socio-Demographics and Household Composition  

The impact of socio-demographic variables on travel behavioral patterns is a well-studied topic. 
Several studies found significant relationships between travel and variables such as age, gender, 
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household composition, and income. For example, Newbold et al. used the General Social 
Survey dataset in Canada to determine the travel pattern differences of older (65+) and younger 
people.(15) The data are available for different time periods and can therefore control for 
generational differences. The study found significant differences in trip duration and frequency 
across generations. Employment level and health status were also significant predictors of trip  
duration and frequency. 

Gender differences in trip duration, frequency, and mode choice are significant in many studies, 
which attest women to be more likely to change their behavior toward more sustainable travel 
modes.(16,17) Moriarty and Honnery and Best and Lanzendorf found no significant differences 
between men and women in total number of trips and distance traveled but found differences  
in activity types.(18,19) Whereas men make more work trips, women make more trips for 
maintenance activities. Researchers consistently found that household composition influences 
trip type, duration, and frequency. Key stages in households include the gain or loss of 
employment, having children, and retirement.(20) Students, unemployed, and part-time employed 
households with no children are more likely to use non-motorized forms of transportation, and 
high-income or retiree households are less likely to use non-motorized transportation. Car 
ownership, also endogenous to some model systems, is found in many studies to be significant 
with a tendency for people to use cars versus public transit. This trend is significant with high-
income groups.(21) Giuliano, Giuliano and Narayan, and Giuliano and Dargay studied differences 
in travel behavior between different socio-demographic groups in the UK and the United 
States.(22–24) According to these studies, Americans make 4.4 trips per day with a length of 43 mi 
compared to 3 trips per day and 16 mi in the UK. In both countries, travelers over age 65 travel 
roughly half the distance of younger participants. The difference between countries is explained 
by the lower income and significantly higher transportation costs in the UK compared to the 
United States. 

Bomberg and Kockelman surveyed over 500 commuters in Austin, TX, to gather information on 
their driving behavior during and after an abrupt increase in fuel prices.(25) For most of summer 
2005, price increases were comparable to previous years; however, between August and 
September 2005, prices increased 36 percent from $2.16 to $2.93/gal. Ordered-probit models to 
classify the travel behavior change suggest that travelers are most likely to respond by reducing 
overall driving; this reduction is achieved through increased use of other modes or trip chaining. 
A traveler’s built environment characteristics were more influential in behavior change than even 
income, education, and average driving. Some drivers even adapted their driving style, 
suggesting some drivers adopt a series of strategies to cope with system changes. Respondents 
were surveyed again in 2006 to gather information about response to transportation policy 
measures. Though there was substantial support for alternative modes and reduced fuel 
dependency, respondents willingness to pay for driving increased ($1.45/gal as distance from the 
central business district (CBD) increased by one standard deviation from the mean (3.74 mi). 

It is worth noting that some urban form variables were evaluated in addition to the traveler 
characteristics in these studies. Residents of less dense urban areas tend to travel further. As a 
result, density influences the price of travel and therefore the travel behavior.(26) In the United 
States, urban form is thought to reinforce car use and dependency.(23) 
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Effect of Travel Demand Management Measures and Parking Pricing on Mode Choice 

A Transit Cooperative Research Program (TCRP) report found that eliminating minimum 
parking space requirements and charging market rates for residential parking spaces could  
reduce vehicle ownership per household enough to reduce household VMT by 30 percent.(27) 
Additionally, charging employees for parking at work was linked to a 10 to 30 percent  
decrease in single-occupancy vehicle (SOV) mode share depending on the quality of transit 
alternatives.(27) In Portland, OR, establishing maximum parking ratios and a parking limit 
maximum appeared to reduce the downtown parking ratio by half from roughly 3.4 long-term 
spaces per 1,000 ft2 of commercial space in 1973 to 1.5 spaces per 1,000 ft2 in 1990.(27) These 
parking policies, alongside some transportation demand management (TDM) measures and 
transit enhancements, are credited with increasing Portland’s downtown transit share from 20 to  
25 percent in the early 1970s to a downtown commuter transit share of 30 to 35 percent in the 
1980s and 1990s.(28) As expected, many urban design variables influence mode share (e.g., cities 
with few parking spaces per employee tend to have higher transit mode share) since limits on 
parking are implicitly reflected in the shadow price associated with parking.(28) 

Using the 6-week Mobidrive study, Schlich and Axhausen explored repetitious travel 
behavior.(29) Because people rarely evaluate all their options at each new opportunity and 
because constraints are relatively similar from day to day, habits are formed but mediated by 
each day’s changing needs. Schlich and Axhausen found that behavior is more variable on 
weekend days than working days.(29) For each individual in the study, variability was sharply 
reduced and then constant after 2 weeks (i.e., the respondent looked similar over 3 weeks and 
over 5 weeks). The authors recommended observing participants over a 2-week period. 

Learning, Experience, and Inertia 

Inertia, or a traveler’s propensity to continue making the same choices based on past experience, 
is not yet well understood. In 2011, Cherchi and Manca demonstrated that the significance of 
inertial effect varies substantially with model specification, and this effect is not stable  
during a stated-preference experiment.(30) Depending on a participant’s past experience and 
exposure to options, the inertial affect also varies, pointing to a need for well-designed and 
controlled experiments. 

Using an agent-based model employing Bayesian perception updating, Chorus et al. determined 
a perceived value of acquiring travel time information as the difference between expected regret 
induced by a choice before and after acquiring information.(31) Simulations revealed that this 
value of information, even for drivers who considered transit as an alternative to driving, is 
influenced by three factors: information irrelevance, information unreliability, and preference for 
driving options. These same factors also limit the effect of received information on mode choice 
when the information is highly favorable toward transit. The authors suggest that only transit 
information that is freely provided and easily accessible has the potential to be used by drivers. 
This information should also be reliable and include aspects of comfort, dynamic conditions, 
convenience, and perhaps even environmental friendliness. Given the difficulty in meeting these 
conditions of low-cost, high-quality information, Chorus et al. suggested that it may be more 
efficient to demonstrate the car’s limited attractiveness in certain conditions, such as inclement 
weather or road accidents.(31) 
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The role of inertia in influencing users’ responses to real-time information had previously been 
captured by Srinivasan and Mahmassani in the context of route switching decisions, as discussed 
in the next section.(32) 

PRE-TRIP, EN-ROUTE, AND DAY-TO-DAY BEHAVIOR 

Jan et al. found that travelers habitually follow the same route for the same trip, but route 
variations increase with longer travel distances.(33) The dominant factors for route choice are 
travel time and distance.(33–35) Considerable research effort has focused on the effects of route 
choice behavior under traffic information systems, the dynamic aspects of the route choice 
behavior, and the relationships among route choice, departure time, and trip-chaining decisions. 
(See references 32, 36–39.) 

Traveler information substantially influences route choice. Abdel-Aty et al. studied route 
changes in Los Angeles, CA.(35) Only a small percentage of the respondents (15 percent) reported 
using more than one route on their commute. Of that 15 percent, 34 percent said they changed 
routes after seeing traffic conditions. Drivers with higher incomes and education levels predicted 
more route changes, perhaps reflecting schedule flexibility and arrival time expectations. 

Mahmassani and Herman performed a survey of commuters in Austin, TX, and yielded a binary 
logit model that relates route switching propensity to four types of factors: geographic and 
network condition variables, workplace characteristics, individual attributes, and use of 
information (radio traffic reports).(40) They found that variables describing the characteristics of 
the commute itself had a dominant effect relative to workplace rules or individual characteristics. 
Information in the form of radio traffic reports also appeared to have a strong impact. Regular 
listeners to traffic are more likely to switch routes. The only socio-demographic attribute 
significant in the model was age.(41) 

In a similar experiment, Avineri and Prashker examined the impact of information on traveler 
learning, differentiated by travelers’ risk aversion.(42,43) The results suggest that when 
information about travel times is provided, travelers do not always choose the route with the least 
expected travel time. Giving static information to users serves to increase traveler heterogeneity. 
In this case, individuals learned more quickly to prefer either routes with less travel time or 
routes with less variability in travel time. When examined at an aggregate level, this combination 
could be seen as a “non-learning effect,” or no change. Furthermore, higher variation in travel 
times is associated with lower sensitivity to travel time differences. Avineri and Prashker found 
in some cases that increasing travel time variability of a less attractive route could increase its 
perceived attractiveness.(42) This underlines the need for better models of learning and reinforced 
habits as an alternative to utility maximization. 

Beyond these dimensions, only a few studies have addressed destination adjustment in response 
to real-time information for discretionary (shopping) travel.(44) The remainder of this section 
discusses the effects of other network and non-network factors. 

Effect of Tolling and Other Costs on Mobility Decisions  

Travel cost as part of demand management is a powerful tool to influence travel behavior. 
Hensher and King examined the influence of parking costs in the CBD, a park-and-ride facility 
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with public transit access, and the related mode choice as well as destination choice (including a 
“forgo the trip” alternative) in Sydney, Australia.(45) Each participant was required to consider 
six alternatives in a stated preference questionnaire. In 97 percent of the responses, cost was the 
most significant factor in determining location choice and mode choice. Similar results were 
found by Handy et al. in a study of whether Americans drive by choice or through necessity.(46) 

Congestion pricing of roadways presents a valuable opportunity to rationalize road networks by 
helping ensure that travelers pay for the delay costs they impose on others. A study of Seattle, 
WA, travelers with Global Positioning System (GPS) vehicle units estimated that variable 
network pricing (to reflect the congestion impacts of different demand levels over space and 
time) would reduce regional VMT by 12 percent and total travel time by 7 percent with a 6-to-1 
benefit-cost ratio.(47) Using GPS tolling meters, the study followed participants to establish a 
baseline tolling routine. Participants were then given a monetary travel budget sufficient to cover 
the cost of their routine for the duration of the study period, creating an incentive to reduce 
certain forms of travel to save/make money. This policy approach is very similar to Kockelman 
and students’ credit-based congestion pricing policy proposal, though VMT results differ in their 
network simulations of the Austin and Dallas-Ft. Worth regions of Texas, where marginal social 
cost pricing of freeways for all links by time of day is consistently estimated to result in VMT 
savings of under 10 percent.(48,49) 

Saleh and Farrell investigated the influence of congestion pricing on the peak spreading of 
departure time choice.(50) Taking into account the scheduling flexibility of respondents, results 
suggest that non-work activities and work schedule flexibility impact departure time choice  
for the trip to work. Furthermore, respondents were less willing to pay tolls to depart earlier  
than usual. 

Similarly, a TCRP report discusses a number of elements that influence travelers’ decisions to 
use a high-occupancy vehicle (HOV) lane.(51) The report concludes that so many urban, facility, 
and vehicle characteristics interact with one another that it is difficult to delineate the effect of 
HOV lanes on travelers. However, the success of HOV lanes, both in terms of drivers served and 
benefits to the road network, is attributed to combinations of the following characteristics: 

• Urbanized population of 1.5 million or more. 

• An orientation, preferably radial, to a city center, focusing on major employment centers 
with preferably more than 100,000 jobs.  

• Geographic barriers.  

• Congestion in general purpose lanes. 

• Realistic potential for 25 to 30 buses per hour. 

• Peak hour travel time savings of preferably 1 min/mi or more or at least 5 min of total 
travel time. 
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Effect of Walk Quality on Day-to-Day Travel Behavior and Patterns 

Beyond information and pricing, the quality of the urban environment can influence route and 
activity timing decisions. Cervero and Kockelman examined many features of urban form that 
may reduce auto dependence.(52) Their gravity-based accessibility measure for access to 
commercial jobs was found to have an elasticity of -0.27, suggesting neighborhood retail shops 
and pedestrian-oriented design are more significant than residential densities in mode choice 
selection. Integrating aspects of pedestrian-oriented design, such as four-way intersections  
and vertical mixing of land uses, may result in significant VMT reductions. For example, a  
10 percent increase in the number of four-way intersections in a neighborhood was associated 
with an average reduction of 5.19 percent of person miles traveled for non-work trips. A 
doubling of land use mix or variety is associated with a roughly 11 percent increase in modes 
other than SOV for non-work travel. These effects are discussed in more detail in chapter 4. 

Besides urban density, mixed land use and high-quality pedestrian-oriented urban design 
increase the use of public transit and non-motorized transport modes.(53) Naess and Naess and 
Jensen found that, in general, car use increases with increasing distance from the city center.(54,55) 
This could also be an indicator of self-selection or endogeneity. Similarly, Cervero studied the 
impact of compact, mixed use, and pedestrian-friendly design on mode choice.(56) The study 
quantified density and diversity and estimated the influence of each on mode choice. The 
influences were significant but modest. Surprisingly, the most important influence factor for 
mode choice was the sidewalk ratio. In well-developed pedestrian areas, commuters were more 
likely to use public transit and join carpooling initiatives. 

Information, pricing, and urban form influence day-to-day and within-day behaviors, but they are 
understood and applied over time such that they also influence travel patterns. These and other 
influences are discussed in the following subsections. 

Behavioral Mechanisms  

Besides all the influencing factors and characteristics that help explain travel behavior changes, it 
is important to understand the underlying process of the perception and manifestation of these 
characteristics, which then lead to behavior adjustments. That is, how do patterns become 
lifestyle choices? Even though there are day-to-day travel variations as discussed in the previous 
sections, it has also been noted that travel patterns repeat themselves, which suggests that parts 
of travel behavior are habitual and influenced by inertial effects.(57) Furthermore, the effect of 
information, as discussed in previous sections, depends on whether travelers comply with the 
prescribed information. Inertia, information compliance, travel experience, and learning 
determine the system outcomes that feed back into supply and demand models. 

Behavior adjustment implies that behavior is an outcome of experience or new information of the 
current conditions. This can be seen as a learning process, which leads to an adjustment of the 
behavior. Mahmassani and Chang studied an adjustment and experience-based model of 
perceived travel time for departure time choice.(58) Under the myopic adjustment rule, the 
perceived travel time is only a function of the latest day’s outcome. In laboratory experiments 
conducted to study the effectiveness of different information strategies on user responses to 
information, Srinivasan and Mahmassani found that route switching model specifications,  
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which predict whether a user will switch paths in a given time interval, consistently 
outperformed models that view the process as a new choice at every opportunity.(32) These 
mechanisms are neither mutually exclusive nor collectively exhaustive. As a result, they can 
operate simultaneously and in conjunction with other mechanisms. The authors designed an 
experiment whereby virtual commuters were given trip times at three facilities (decision 
locations), real-time information about congestion on the facilities, a message alerting when  
they were stuck in a queue, and post-trip feedback consisting of departure time, arrival time,  
and trip time on the chosen path. Their empirical findings suggest that an individual’s negative 
experience with ATIS information has mixed effects on inertia, but congestion and information 
quality tend to reduce inertia. Drivers who experience lower switching costs and increased trip 
time savings tend to comply with information. In the sequential treatment, past negative 
experience relative to preferred arrival time seemed to increase likelihood of compliance. 
Inaccurate information decreased drivers’ compliance propensity. 

Bayarma et al. examined multiday travel behavior as a stochastic process using 6-week travel 
diary data to explore how travel patterns vary and persist among heterogeneous individuals.(59) 
The authors classify weekday travel patterns into five representative patterns: public transport 
commuting; extensive car use involving three or four visits to a location; three to four shopping, 
leisure, and social trips; high fraction of trips which serve to transport another person; and mostly 
work visits and time spent on work-related activities. The authors found that transitions from a 
pattern to itself were frequent, especially for non-workers, but transitions from pattern to pattern 
varied substantially across individuals. Individuals with a driver’s license tended to have a higher 
level of day-to-day variability in their travel patterns. Residential location type also influenced 
variability in daily travel, with individuals living in a central area regularly pursuing more 
shopping and leisure activities. Gender, marital status, and number of household vehicles  
were insignificant in this study; age, household type, and employment status explained much  
of the variation. 

In a seminal work on attitude-behavior theory, one study examined the interrelationships 
between attitudes and behavior from multiple modeling perspectives: multi-attribute models, 
hierarchical models, market segmentation models, and, to a lesser extent, structural equation 
models.(60) Simple models provide empirical support for behavioral feedback mechanisms, and 
attitudes and behavior are found to simultaneously influence one another. This concept of 
simultaneous influence has been explored in greater depth since the study, and market 
segmentation and structural equations models are still used to explore psycho-social influences 
on travel behavior. Beyond attitudes, perceptions and intentions also have a substantial influence 
on behavior. While attitudes and perception have been explored in great depth, less attention has 
been given to traveler intention until recently. Bamberg found that forming an implementation 
intention (when, where, and how to perform an action) increases the probability that a goal 
intention is manifested in behavior.(61) In the study of 90 university students, forming an intent to 
ride a new bus route was the best predictor of whether the student did in fact ride the new bus 
route, even more so than current bus and auto use habits. While habit exerted a strong negative 
effect on whether one would test the route for the control group, this habit strength did not 
influence the experimental group. Thus, Bamberg points out that influencing behavior involves 
not only influencing the decisionmaking process but also the formation of implementation 
intention.(61) 
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The studies reviewed in this chapter reflect a diverse field of inquiry conducted by researchers in 
various disciplines. While considerable understanding exists on several aspects of both short- 
and long-term behaviors of travelers, the level and completeness of that knowledge is highly 
variable. More importantly, the ability to make operational use through models for the prediction 
of user responses to contemplated policies and interventions is limited, especially with regard to 
measures that entail capturing the dynamic aspects of user decisions in transportation systems. 
The remainder of the report illustrates how different choice dimensions are affected by given 
policies and programs and how these can be modeled effectively to support design and 
evaluation of these policy and programs. 
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CHAPTER 3. SCOPE DELINEATION AND CONCEPTUAL FRAMEWORKS 

This chapter discusses the conceptual framework and defines categories to organize operational 
interventions, traveler choice dimensions, and factors affecting user response. The framework’s 
core components are operational interventions, information dissemination, traveler choice 
dimensions, and network and non-network influencing factors. 

SCOPE DELINEATION 

Traveler behavior research is a broad domain. The synthesis presented in this chapter is not 
intended to be comprehensive over the entire domain. Rather, it focuses on choice dimensions 
that are influenced by and relevant to operational planning and management interventions. 
Interventions at this level have a narrower scope than, for example, the strategic level, which 
involves resource acquisition and network design. Nevertheless, long-term traveler decisions 
such as mode shifts, auto ownership, or location changes are of interest, as models of activity 
engagement and related decisions are becoming more realistic in practice. On the intervention 
side, the focus is mainly on ATDM. ATDM is a strategic approach to apply technology-
supported measures in a proactive way to influence behavior and system performance and thus 
address potential problems before they occur. ATDM covers managing travel demand (MTD) 
and ICM, including dynamic mobility applications (DMAs). The synthesis also covers active 
traffic management (ATM) on the supply side since the delineation between supply and demand 
management is somewhat fuzzy, and some degree of overlap occurs in several areas, such as 
information supply. 

Since most supply management interventions change the level of service of the network, the 
focus is on network factors influencing traveler behavior. However, demand management 
interventions may change non-network factors, as well. The range of interest for non-network 
factors influencing traveler behavior is broad and not rigidly delineated. Non-network factors are 
numerous, ranging from weather, which is natural and easy to observe, to walkability, which is 
more subjective and less straightforward to measure. The non-network factors are also important 
in that they interact with network factors in influencing traveler decisionmaking, as they define 
the environment (context) and relative attractiveness of choice alternatives. Furthermore, traveler 
characteristics as well as vehicle characteristics influence traveler choices. 

Taken together, these confounding forces and influences become difficult to separate from one 
another. The comprehensive framework presented in the following sections attempts to 
conceptualize these person-network interactions over short-, medium-, and long-term time 
horizons. This framework seeks to capture the anticipated and actual effects of operational 
interventions on the supply and demand sides. 
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GENERAL FRAMEWORKS FOR INCORPORATING TRAVELER BEHAVIOR IN 
SIMULATION MODELS 

Conceptual Framework 

Transport planning aims to describe, understand, and model the choices households and 
individuals make during the execution of their daily lives, including the more or less frequent 
journeys outside their daily activity space.(62,63) The behavioral demand models feed the supply 
and network models to assign traffic to the infrastructure. These models are in turn used to 
evaluate and optimize changes to the transport system undertaken by the owners of its various 
components (e.g., reduction or expansion of road capacity through interventions, including 
demand management and supply management as well as broader policy changes). Travelers 
make their decisions based on the characteristics of the system and travelers’ perceptions. For 
example, as new information becomes available, travelers adjust their perception and adapt their 
travel behavior. Different system factors as well as decisions en-route must be considered. 
People decide where they want to live, where their workplace is, and whether they will own one 
or more vehicles, buy monthly transit or toll passes, etc. Travelers must decide how often and 
where their everyday and less frequent journeys take them, their mode(s) of transport (where 
multimodal trip alternatives may be available), when to start trips, what destinations to visit 
along the way and for how long, and what route they want to take. In making decisions, 
individuals’ cognitive abilities and limited information availability play a substantial role, 
reflecting varying degrees of bounded rationality.(58,64,65) People attempt to make subjectively 
rational decisions based on a limited amount of knowledge and assessment capacities, not 
necessarily fully informed or objectively rational choices. 

Operational interventions, supply and demand management, traveler choice dimensions, and 
factors affecting user response, which are considered either endogenous or exogenous, interplay 
with each other and are summarized in the conceptual framework in figure 1. 

Household and individual behavior change dimensions can be categorized according to the time 
frame over which they might take place. The level of analysis where a particular decision or 
group of decisions must be considered includes the following: 

• Short-term decisions: Take place within day as well as from day to day. Short-term 
decisions can be categorized further as follows: 

o Strategic pre-trip high-level traveler choices: Take place before departure  
(i.e., trip-making decisions). 

o Tactical en-route high-level traveler choices: Take place during the trip  
(i.e., route modification). 

• Medium-term decisions: Involve behavioral patterns such as activity chain planning and 
adjustments that take place over a longer period than hours and days. 

• Long-term lifestyle and mobility decisions: Affect vehicle holdings and location 
choices and take place over weeks, months, and years. 
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Operational intervention programs can be categorized by the interventions or controls with which 
they seek to improve the system operations and performance by influencing the underlying 
traveler choices.(66) They can target the supply side, (i.e., the network with traffic and 
infrastructure access controls (e.g., ramp metering)), which in turn affects behavior changes 
through the level of service as an influence factor. Alternatively, operational interventions  
may affect the demand directly with pricing (i.e., congestion pricing). Demand and supply 
management overlap as information supply (i.e., variable message sign (VMSs), earlier  
traveler time dissemination, etc.) targets both the demand and supply sides indirectly through 
demand response. 

 
Figure 1. Illustration. High-level conceptual framework. 

In addition to demand management, which influences household and individual behavior 
directly, there are additional influencing factors, which can be divided into two categories: 
traveler and system factors.  

Traveler factors can be further divided into the following categories: 

• Traveler and household characteristics: Affect traveler behavior. 

• Vehicle characteristics: Affect traveler behavior (i.e., type, dynamics). 
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System factors can be further divided into the following categories: 

• Network characteristics (i.e., connectivity, length of route, roadway types) and 
segment elements: Define roadway and transit path characteristics (i.e., ride quality, 
lanes, frequency, etc.).  

• States of or features of the network as well as events that affect traveler behaviors: 
Not originating from system control strategies (i.e., weather, walking paths, and other 
characteristics of transit service besides route configuration, such as headways). 

It is important to note that the behavior choices are preferably denoted as behavior changes, as 
they might often be better represented as the outcome of an adjustment process of a current 
choice rather than as the outcome of a first-time choice process that does not recognize one’s 
current state. Also, the arrows in figure 1 not only show the possible mappings of an explanatory 
variable on a possible outcome. Rather, they represent the perception of attributes and 
characteristics of the user in question. 

Modeling and Simulation Frameworks 

Three primary categories of modeling tools and simulation frameworks used in transportation 
studies are adapted in the case studies presented in this report. First, mesoscopic simulation-
based DTA tools have become widely accepted platforms for delivering richer behavioral models 
to network analysis and evaluation applications. Second, microsimulation models for operations 
analysis are used in applications that involve more geometric detail associated with lane use and 
other localized interventions. Developments for the former class of tools have been shown to 
port rather well across software platforms, partly because most have been built on a similar 
blueprint developed and widely published in the early to mid 1990s. The second category is more 
challenging to develop generic procedures for, though experience shows that when there are 
valuable developments coming out of public sector research, vendors tend to adopt and 
incorporate them in their offerings. Third, rule-based computational process models and agent- 
based models aim to represent underlying processes directly, similar to a production system 
model, which contains complex if-then rules. As typically applied in social physics, these models 
have lacked the ability to statistically capture the significance of the factors embedded in the 
rules and as such are not always best suited to understand behavior changes, reflect observed 
behavior empirically or in experiments, or predict future changes for specific actual geographic 
areas. Conversely, they allow agents not only to interact with their environment, but also to 
interact with other agents. As a result, they can describe dynamic processes more completely 
than microsimulation models typically used in practice. 

Application-Specific Modeling and Simulation Frameworks by Decreasing Time Frame 

Fully configured comprehensive activity-based modeling systems are computationally very 
demanding, and it takes a long time to execute even a single run. Although figure 1 shows the 
interrelation of the different user behavior dimensions, which are affected by system or attribute 
changes, such a modeling system is operationally not practical. Because going through an 
exercise of updating medium- and long-term choice dimensions with every choice update based 
on short-term changes is not attractive nor useful, a key question for modelers is which choice 
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dimensions must be treated as endogenous and which choices can be viewed as exogenous. 
Traditionally, supply and demand management strategies have been used to only update route 
choices or shortest path calculations in supply tools. However, with additional information 
provided to travelers, the range of endogenous choices included in the model can and should be 
expanded. This concept is illustrated in figure 2 where long-term changes are outside the 
modeling realm, and information blurs the boundary between day-to-day behaviors, behavioral 
patterns, and medium-term changes. As travelers gain more information, the inner sphere 
expands to include these behavioral patterns, which may be adjusting more dynamically than has 
been recognized in existing models. 

The different case studies presented in the following chapters follow their time horizon from 
long-term policy interventions to short-term interventions. Each case study includes a general 
framework that points to the relevant choice dimensions to be included into the modeling tools. 
This framework discussion within subsequent chapters focuses on specific interventions and the 
associated data and modeling requirements. Within each of the following intervention areas, the 
following case studies are presented: 

• Policy and non-network interventions. 

• AERIS.  

• ATDM and MTD.  

• ATIS:  

o ICM. 

o WRTM.  
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Figure 2. Illustration. Expanding sphere with fuzzy boundaries. 
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CHAPTER 4. URBAN POLICY AND NON-NETWORK INTERVENTIONS CASE 
STUDY 

PROGRAM INTERVENTIONS: URBAN DESIGN POLICY 

Built Environment 

The potential influence of the built environment on travel behavior has been widely studied in 
the literature.(56,67,68) Early studies of land use and travel behavior focused more on hypothesis 
testing regarding the correlation between built environment and travel, but the debate about 
causality of observed correlations is ongoing. Despite the large number of existing studies, the 
magnitude of the effects of built environment on travel behavior, specifically mode choice, is 
unclear. Self-selection/endogeneity and serial and spatial correlation among individuals and 
environments surveyed are difficult to measure and evaluate, and the relationships between built 
environment and travel behavior cut across levels of time and space. 

Cao et al. and Mokhtarian and Cao provide an extensive discussion on how to robustly infer 
causality in this regard.(8,9) To do so, four types of evidence are required: correlation, non-
spuriousness, time precedence, and causal mechanism.(9) Correlation refers to a significant 
association between the considered variables and travel behavior. Non-spuriousness refers to a 
relationship that cannot be attributed to another variable. Time precedence requires causes to 
precede effects, and causal mechanism is a logical explanation for why a cause should produce 
the observed effect. Many studies in the past have carefully controlled for the statistically 
significant correlations and causal mechanism in which a logical explanation of the cause and 
effect exists. However, few studies have been able to meet the non-spuriousness and time 
precedence criteria.(69) Mokhtarian and Cao suggested that a model that explicitly includes 
attitudinal and socio-demographic variables could perform well on the non-spuriousness 
criterion, specifically with regard to residential self-selection.(9) “Residential self-selection” 
refers to the tendency of people to choose locations based on their travel abilities, needs and 
preferences.(69) Therefore, an observed correlation between land use and travel behavior can be 
ensured to be the non-spurious result of the unmeasured variables. Performing temporal analyses 
and involving measurement at multiple points in time can help to meet the time precedence 
criterion.(9,70) While these considerations would help strengthen a planner’s argument, they still 
fall short of accepted standards for scientific evidence. 

Most of the land use-travel behavior studies are regression-based, in which socio-demographic 
characteristics and measures of land use are treated as independent variables.(69) Suggesting that 
the underlying behavioral structure of how land use influences travel is missing in regression-
based analyses, Boarnet provided a review of methodologies to overcome this limitation.(71) Land 
use can influence the cost to travel by changing travel time. Boarnet and Crane suggested that 
travel speed and trip distance are functions of land use and proposed using a composite travel 
price variable representing the impact of land use on travel cost.(26) Cervero also uncovered the 
possible impacts of residential self-selection on travel behavior.(72) A quantitative approach 
suggested by some researchers to deal with this problem is to develop joint discrete choice 
models of residential location and travel behavior.(73–75) The endogeneity of policies, plans, and 
urban development patterns is another limitation which has been virtually neglected in the 

23 



 

literature.(71,76) This endogeneity results in serial and spatial correlation, which affects how 
individuals make decisions over time, affecting network accessibility and location choices. 

A recent study by Zhang analyzed the influence of land use on travel mode choice using data 
from Boston, MA, and Hong Kong for work and non-work travel.(68) Under the assumption that 
attitudes affect both travel behavior and land use through residential self-selection, this study did 
not properly detect the true effect of land use on mode choice because the model did not consider 
self-selection bias. Improvement in a model’s goodness-of-fit after the inclusion of land use 
variables does not necessarily imply that land use has an independent influence on mode 
choice.(68) 

Crime 

While transit agencies can control many aspects of their service, the public nature of transit 
means that passengers’ experienced quality of service is subject to environmental factors often 
outside of the agency’s control. Concern for personal safety/security is a primary concern of 
transit riders and non-riders, and studies suggest that fear of crime acts as a deterrent to transit 
ridership. (See references 77–80.) Needle and Cobb presented case studies that indicated that 
crime and peoples’ perception of it reduces transit ridership and revenues.(81) 

Loukaitou-Sideris et al. studied 10 bus stations with the highest crime rates in Los Angeles, CA, 
and found that physical environment and the occurrence of crime are correlated.(79) Most of the 
10 high-crime bus stops in the study were located in parts of the city that lack proper lighting, 
good police deployment, or public phones (the study precedes the widespread availability of 
mobile phones). Painter studied the effects of street lighting on crime, fear of crime, and 
pedestrian street use and also concluded that lighting improvements can reduce street crimes to a 
large extent.(82) Painter also found that street lighting could increase pedestrians’ propensities to 
use the streets after dark in urban streets and residential settings.(82) One approach to reduce 
crime at transit stations is to follow recommendations of a program called Crime Prevention 
Through Environmental Design (CPTED).(83,84) The CPTED concept is based on the defensible 
space concept in which people need to see and be seen in order to protect themselves and avoid 
crime, and people need to report crimes when they occur. 

Some studies have suggested counterintuitive results (i.e., higher crime attracts transit use). This 
may be because crime influences market segments differently. Transit captives by definition do 
not have much choice in mode, so the interaction of crime and income and their effects on transit 
use is still unclear. Ferrell and others have argued that these contradictory results of effects of 
crime on women and adolescents’ physical activities could be related to the differences in 
actual/reported crimes and individual perceptions of neighborhood crime.(85,86) Less serious 
crimes such as intimidation, public indecency, obscenities, vagrancy, and vandalism affect the 
transit environment but may go unreported if riders choose to ignore them. While in these studies 
the relationship between reported crimes and physical activity engagement is unclear, the 
perceptions of crime and safety are related to the physical activity engagement.(87) Kim et al. 
found that women’s access mode to transit is influenced by crime. Women are more likely to be 
dropped off at the station at night than drive, use transit, or walk.(88) Employing CPTED concepts 
to enhance defensibility, awareness, and surveillance could influence these choices over time. 
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Behavioral Dimensions—Mode Choice 

Cervero and Kockelman suggested that land use characteristics can be categorized in “three 
D’s:” density, diversity, and design.(52) Density refers to the variable of interest divided by area 
(e.g., population density, job density, etc.). Diversity refers to the different land uses in a given 
area (e.g., entropy index, diversity index, mixed use development, etc.). Design refers to the 
properties of the network such as connectivity, grid, or cul-de-sac, etc. Zhang summarized the 
direction of effects of land use on travel behavior (see table 1).(68) An increase in density often 
decreases the likelihood of driving, driving length, and trip chaining while having mixed effects 
on driving frequency, route choice, and telecommuting. Increases in diversity measures reduces 
driving choice while increasing driving frequency and trip chaining. Diversity has mixed effects 
on driving length and route choice. Network design with more connectivity also decreases the 
likelihood of driving while it may increase driving frequency. The effects of land use on 
departure time choice and telecommuting are mostly unknown. 

Table 1. Summary of the effects of land use on travel behavior.(68) 

Travel Behavior 
Dimensions of Land Use 

Travel Patterns Density Diversity Design 
Driving choice − − − Modal split 
Driving frequency ± + + Total trips 

Driving length and duration − ± ? VMT/vehicle hours 
traveled 

Departure time ? ? ? Peaking 
Route choice ± ± ± Road congestion 
Trip chaining − + ± Trip rate and distance 
Tele-travel ± ? ? All 

Note: The symbols +, -, and ? indicate positive, negative, and unknown effects, respectively. 

The research has grown from the “three D’s” to include detail, destination, and a dozen others. 
This requires new ways of thinking and additional data to understand a suite of trips and 
socialization. There are strong attitudinal elements and a wide variation of elasticity of attitudes 
with respect to different interventions; this requires capturing heterogeneity among travelers. The 
understanding of interactions between modes is growing, and often a number of modes are 
competing for the same space. There are also interactions between network and non-network 
characteristics of modes. For example, walkability requires that sidewalks exist and be in good 
condition. There is a demand for different products, so researchers need to think of a synergistic 
suite of options or a mobility bundle. 

The FHWA Complete Streets program is intended to examine such mobility bundles and provide 
viable alternatives to auto travel via infrastructure that accommodates all types of users. The 
program suggests improving land use and design measures that enhance accessibility and walk 
quality, such as sidewalks, bicycle lanes, safe and accessible transit stops, and frequent and safe 
crossings for pedestrians.(89) Regarding transit accessibility, several studies have found a positive 
impact on transit choice with elasticities between 0.02 and 1. (See references 90−94.) Others 
have looked at the effect of transit accessibility on VMT. (See references 90, 92, and 95–99.) 
They all found a significant negative impact with elasticities between -0.01 to -0.19. Mixed use 
development has been found to have a positive impact on transit choice. Studies by Zhang and 
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Frank et al. suggest that the effect of land use mix on transit choice is larger for non-work trips 
than work trips.(92) Table 2 presents point elasticities of different land use variables reported by 
Cervero.(56) Sidewalk ratio, as a walk quality measure, has a negative impact on driving 
regardless of trip purpose and positive impact on transit use. 

Table 2. Point elasticity estimates imputed from mode choice models: percentage change in 
probability of choosing mode with a 1 percent increase in built environment factor.(56) 

Built-Environment 

Home-Based 
Work Trips All Trip Purposes 

Drive Alone 
Drive 
Alone 

Group 
Ride Transit 

Gross density1, origin -0.151 -0.163 -0.124 +0.511 
Gross density, destination -0.259 -0.137 -0.096 +0.268 
Land use diversity2, origin -0.141 -0.340 -0.361 +0.615 
Land-use diversity, destination -0.197 -0.291 -0.165 +0.452 
Sidewalk ratio3, origin -0.390    
Sidewalk ratio, destination -0.448 -0.366 -0.062 +0.327 
Transit-oriented multi-family housing, origin  -0.052 -0.066 +0.195 
Job accessibility4, origin +0.141    
Labor force accessibility5, destination +0.290    

Note: Blank cells indicate instances that were not measured. 
1Gross density = (population + employment)/gross square miles (in thousands). 
2Land use diversity = Retail employment and population relative to countywide ratio. 
3Sidewalk ratio = Ratio of sidewalk miles to road miles. 
4Job accessibility = Number of jobs (in thousands) within 45-min highway network travel time. 
5Labor force accessibility = Number of households (in thousands) within 45-min highway network travel time. 

Framework for Evaluation 

The interest in analyzing transport policies in terms of their impacts has led to the use of 
disaggregate demand models, which seek to understand short-term effects of such policies as 
congestion pricing. The limitation of traditional trip-based travel models to capture the complex 
ways travelers respond to such policies has led to the development of behavior-oriented activity-
based models and the introduction of traveler response to current cost, travel time, reliability, and 
other service information. 

The advantages of activity-based models are diverse and include the following: 

• They can identify the influence of trip attributes on time, destination, and mode. 

• They capture longer-term behavior, overcoming the limitations of tour-based models by 
including activity patterns outside the daily schedule in addition to time dependency, 
destination, and mode. 

• They better capture certain characteristics of individual based decisions beyond aggregate 
traffic analysis zones (TAZs). 
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• They capture short-term decision shifts which may have substantial impacts at the 
network level. 

• Linkage of interpersonal decisions, which are crucial to policies such as HOV or high-
occupancy toll lanes, can be taken into account. Traditional models cannot account for 
the coordination of activities between different individuals (e.g., individuals carpooling 
together), yet this is a characteristic of activity and travel patterns. 

These are also the main reasons to incorporate an activity-based framework over a trip- or tour-
based framework into the analysis of pricing policies. 

Within activity-based models, the modeled behavior choices for households and individuals are 
normally organized sequentially on the basis of the timeframe over which they might take place. 
Long-term decisions are modeled first, followed by medium- and short-term decisions. Each of 
the models imposes certain restrictions on the subsequential decisions on a shorter time horizon. 
The same conceptual framework is kept in place for integrating activity-based models with the 
network assignment procedure to analyze pricing strategies, which is discussed later in this 
report regarding traveler response to network information. 

In the short term, it is expected that travelers’ safety/security perception and built environment 
factors influence mode choice. However, in the medium-to-long-term horizons where policy 
influences the environment and crime rates, policy will indirectly influence further user 
decisions. This is illustrated in figure 3 by taking accessibility measurement calculations into 
account, which in return have effects on upper-level choices of car ownership, daily activity 
patterns, as well as longer-term higher order choices of home, workplace, and school locations. 

 
Figure 3. Illustration. Direct and indirect influences of non-network factors over time. 
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BEHAVIORAL MODELS 

In order to detect the true effect of land use, Mokhtarian and Cao proposed different approaches 
including direct questioning, statistical control, instrumental variables modeling, sample 
selection modeling, joint models, and longitudinal designs.(9) Direct questioning refers to asking 
people in focus groups and personal interviews whether land use affects their travel behavior. 
The statistical method estimates the proportion of total effect of land use on travel behavior 
which is due to land use alone rather than due to the effect of attitudes on land use (via 
residential self-selection) by inclusion of a rich set of attitudinal and socio-demographic 
variables in the model. In instrumental variable models, land use is first modeled as a function  
of relevant instrumental variables and then replaced in the choice model. The sample selection 
modeling technique explicitly models the prior selection into different residential location types 
and then models the outcome as conditional on that prior selection. The joint modeling approach 
considers endogenous variables of residential location and travel behavior jointly and models the 
joint probability bundled. Finally, longitudinal design refers to before-after measurements. 
Referring back to the study by Zhang, although a significant correlation between land use and 
travel behavior was observed, the magnitudes of the elasticity estimates for mode choice with 
respect to the land use variables were relatively small, with an absolute value no greater than 
0.3.(68) Therefore, Zhang properly concluded that land use is necessary but not sufficient to 
influence travel.(68)  

Ewing and Cervero used a meta-analysis to make a similar conclusion that the relationships 
between travel variables and built environmental variables are inelastic, with the greatest 
absolute magnitude of 0.39.(67) Nevertheless, both Zhang and Ewing and Cervero highlighted 
that the combined effect of land use variables could be large.(68,67) Moreover, a study by Chatman 
showed that self-selection is more likely to increase the influence of land use.(100) 

Assuming that residential self-selection is generally a result of attitudes and socio-demographic 
traits, Mokhtarian and Cao suggest that inclusion of a rich set of attitudinal and socio-
demographic variables in a model could offer insightful evidence whether the influence of land 
use is entirely due to predisposed attitudes (self-selection) or not.(9) Mokhtarian and Cao 
proposed a statistical method to estimate the proportion of total effect of land use on travel 
behavior which is due to land use alone rather than due to the effect of attitudes on land use (via 
residential self-selection).(9) To do so, the ratio of the incremental change can be computed in the 
model log-likelihood measure when land use variables are added to a model containing all other 
variables including attitudinal and socio-demographic variables, to the incremental change when 
attitudinal and socio-demographic variables and land use variables are added together  
(see figure 4).(9)  

 
Figure 4. Equation. Land use effect.  

Where: 

 = True effect of land use. 
L1 = Log-likelihood of the base model.  
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L2 = Log-likelihood of the model when attitudinal and socio-demographic variables are added. 
L3 = Log-likelihood of the model when attitudinal and socio-demographic variables and land use 
variables are added together to the base model. 

For this analysis, mixed logit models were used to evaluate the influence of non-network factors 
on mode choices. To realistically capture the impact of non-network impacts on different user 
groups, it is essential to represent users’ preferences in response to crime, accessibility, 
walkability, and travel time in the choice models. To capture the differences between 
heterogeneous users, mixed logit models with random parameters were estimated to model the 
response on mode choices based on the travel time and cost skims. In the mixed logit model 
framework, the utility of each alternative j to each individual i can be represented by the equation 
shown in figure 5 as follows: 

 
Figure 5. Equation. Utility function (mixed logit). 

Where: 

uij = The utility of alternative j for individual i. 
𝑥𝑥𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖= The systematic part of the utility for alternative j and individual i where bj is a vector of 
parameters to be estimated for each alternative j. 
xij = The vector of characteristics unique to alternative j relative to individual i, unique to 
individual i, or both. 

 = The stochastic component of the utility, where zij is the cost vector that varies over 
individuals, ni are individual-specific parameters to be estimated by a distribution with fixed 
parameters, and eij is an independent and identically distributed error term across individuals and 
alternatives. 

For each individual, the choice probabilities will depend on bj and 𝜂𝜂. Conditional on 𝜂𝜂, the 
probability that individual i selects alternative j is simply multinomial logit as shown in  
figure 6 as follows: 

 
Figure 6. Equation. Choice probability (multinomial logit). 

Where: 

𝜂𝜂 = Model parameter for the cost vector. 
𝑃𝑃(𝑗𝑗|𝜂𝜂) = The probability that individual i selects alternative j conditional on 𝜂𝜂. 

If the value of n were known for each individual, the solution to figure 4 would be 
straightforward. However, n is unobserved, although it is drawn from a known joint density 
function g. Thus, to obtain the unconditional choice probability for each individual, the logit 
probability must be integrated over all values of n weighted by the density of n using figure 7. 
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Figure 7. Equation. Choice probability (mixed logit). 

Where: 

Ω = Fixed parameters of the distribution of g. 
𝑃𝑃(𝑗𝑗) = The probability that individual i selects alternative j. 

The parameters in the mixed logit probability formulation in figure 5 are estimated by 
maximizing the following log likelihood function shown in figure 8 as follows: 

 
Figure 8. Equation. Log-likelihood function (mixed logit). 

Where: 

yij = An indicator of whether individual i chooses alternative j, can be solved as follows:  

 
Figure 9. Equation. Choice indicator. 

Ideally, latent class models with random parameters would be well suited to capture endogeneity, 
built environment effects, and the (perhaps counterintuitive) influence of crime on transit. Actual 
crime and crime perception may be related to trip purpose, accessibility, and transit captivity, but 
such perceptions are typically unobserved by transport analysts. Using the general method 
described by Ben-Akiva et al., walkability and safety perception would be treated as latent 
variables, and Walk Score™ or another built environment indicator could be used to measure 
walk quality.(101) Figure 10 illustrates the model concept. 
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Figure 10. Illustration. Hybrid choice model with latent variables.  

DATA AVAILABLE AND USED IN CASE STUDY 

The case study presented in this chapter highlights and leverages new data sources that are 
publically available and ready to be integrated in tools and models at very low cost which would 
allow improving current models and improving the accuracy of predictions without costly survey 
work. Accordingly, multiple data sources are combined to capture network and non-network 
impacts on travel choice. This section provides a detailed description of the datasets that are  
used to estimate the mode choice model. Figure 11 illustrates the variety of information used  
for modeling. 

31 



 

 
Figure 11. Illustration. Integration of multiple data sources. 

Spatially Disaggregated Information About Walk Quality and Safety in Chicago, IL 

Walk and Transit Scores 

Walk ScoreTM is an increasingly popular measure of a location’s walkability.(101) Using the free 
walk score Application Programming Interface (API) and the longitude and latitude of Chicago 
Transit Authority (CTA) bus stops, each stop was assigned a walk score between 1 and 100 as 
defined by the Walk ScoreTM creators: 

• 0–24: Car-dependent, almost all errands require a car.  

• 25–49: Car-dependent, a few amenities within walking distance. 

• 50–69: Somewhat walkable, some amenities within walking distance.  

• 70–89: Very walkable, most errands can be accomplished on foot.  

• 90–100: Walker’s paradise, daily errands do not require a car. 

To compute a walk score, points are awarded based on the distance to amenities by categories, 
where amenities within 0.25 mi receive maximum points, and no points are awarded for 
amenities further than 1 mi.(102) 

Similarly, a transit score is a measure of transit accessibility computed using General Transit 
Feed Specification data. As with the other transit network accessibility measures, since 
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household travel information was available for a single point in each TAZ, the transit score for 
this particular point (not the exact location of a trip start or end), is not particularly meaningful. It 
was included for completeness, but not as significant as the developed measure of transit 
accessibility for estimating mode choice. The definition for transit score is as follows: 

• 0–24: Minimal transit, it is possible to get on a bus. 

• 25–49: Some transit, a few nearby public transportation options. 

• 50–69: Good transit, many nearby public transportation options. 

• 70–89: Excellent transit, transit is convenient for most trips. 

• 90–100: Rider’s paradise, world-class public transportation. 

Crime Data 

The Chicago Police Department’s crime dataset reflects reported incidents of crime (with the 
exception of murders where data exists for each victim) that occurred in Chicago, IL, from 2001 
to the present. In order to protect the privacy of crime victims, addresses are shown at the block 
level only, and specific locations are not identified. Since crime rates vary by season and year, 
this analysis combines crime data from 2005–2008 to represent what may be travelers’ overall 
perceptions of crime in different areas. Crimes were categorized and aggregated for each origin 
and destination TAZ in the Chicago Metropolitan Agency for Planning (CMAP) household 
travel tracker survey (see figure 12). The crimes were categorized according to the Federal 
Bureau of Investigation’s crime classification codes (see table 3). Because it is anticipated that 
crime will be higher where there are more people, total TAZ crimes by category are divided by 
TAZ population to obtain a density as opposed to a count. 
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Figure 12. Illustration. Chicago, IL, crime count at the TAZ level in 2008. 

Table 3. Crime categories tested in model. 
Category Definition 

Index More serious offenses. Homicide first and second degree, criminal sexual assault, 
robbery, aggravated assault, aggravated battery, burglary, larceny, motor vehicle theft, 
and arson. 

Non-index Less serious offenses. Involuntary manslaughter, simple assault, simple battery, forgery 
and counterfeiting, fraud, embezzlement, stolen property, vandalism, weapons violation, 
prostitution, drug abuse, gambling, offenses against family, liquor license, disorderly 
conduct, and miscellaneous non-index offense. 

Property  Burglary, larceny, motor vehicle theft, and arson. 
Violent Homicide first and second degree, criminal sexual assault, robbery, aggravated assault, 

and aggravated battery. 
Aggravated 
assault 

An unlawful attack by one person upon another wherein the offender displays a weapon 
in a threatening manner. Placing someone in reasonable apprehension of receiving a 
battery. 

Aggravated 
battery 

An unlawful attack by one person upon another wherein the offender uses a weapon or 
the victim suffers obvious severe or aggravated bodily injury involving apparent broken 
bones, loss of teeth, possible internal injury, severe laceration, or loss of consciousness. 

Drug abuse The violation of laws prohibiting the production, distribution, and/or use of certain 
controlled substances and the equipment or devices utilized in their preparation and/or 
use. 

Index 
transit 

Index crimes occurring in/on transit vehicles, stations, platforms, or facilities. 
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Time-Dependent Travel Times 

Data on the comparative travel times and travel costs of competing modes (CTA bus and rail and 
Metra rail) for each trip are obtained from network databases. Auto travel times are estimated 
based on time-dependent origin-destination travel times obtained from a simulation-based DTA 
model, Dynamic Network Assignment-Simulation Model for Advanced Roadway Telematics 
(DYNASMART).(102) When skimmed travel times were not available, mode-specific average 
speeds were used to estimate travel times. Table 4 shows the average speeds obtained from the 
reported travel times of the chosen alternatives in the survey data. 

Table 4. Mode-specific average speeds from Chicago, IL,  
Household Travel Survey data.(103) 

Mode 
Average Speed 

(mi/h) 
Auto 14.4 
Bus 5.9 
CTA rail 8.5 
Metra rail 17.7 

 
Chicago Household Travel Survey 

The main source of data was the 2008 Travel Tracker Household Survey conducted in the 
northeastern Illinois region during 2007 and 2008 by CMAP.(104) Travel diary information  
with origin and destination information reported trips (figure 13) was collected from  
14,390 households in the Chicago, IL, region, including some households in western Indiana  
and southern Wisconsin.  

 
Figure 13. Illustration. Map of approximate locations of all origins and destinations 

recorded in the CMAP Household Travel Survey data. 
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The dataset includes a total of 78,681 recorded trips with the four following trip purposes: 

• Home-based to work (HBW): 14,895 trips. 

• Home-based to school (HBSch): 5,640 trips. 

• Home-based to other (HBO): 36,888 trips. 

• Non-home based (NHB): 21,258 trips. 

Travel costs for auto and CTA bus/train were estimated using figure 14 through figure 16 based 
on the Federal rates for privately own vehicle mileage reimbursement: 

 
Figure 14. Equation. Auto cost estimation. 

 
Figure 15. Equation. CTA bus/train cost estimation. 

 
Figure 16. Equation. Metra train cost estimation. 

Fares for Metra rail are estimated based on a distance-based zonal system, as shown in table 5. 

Table 5. Distance-based Metra fares.(105) 
Zone Distance (mi) Fare ($) 

A 0–5 1.95 
B 5–10 2.14 
C 10–15 3.05 
D 15–20 3.45 
E 20–25 3.91 
F 25–30 4.32 
G 30–35 4.68 
H 35–40 5.14 
I 40–45 5.55 
J 45–50 6.00 
K 50–55 6.41 
M > 55 7.32 

 
  

Auto cost = 0.505 × distance + toll(s) + parking fee 

CTA bus/train cost = 1.75 + 0.25 × number of transfers + parking fee 

Metra train cost = fare + parking fee 
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Chicago, IL, Land Use Data 

Land uses were obtained from CMAP’s 2005 land use inventory. The inventory was created 
using digital aerial photography supplemented with data from numerous Government and 
private-sector sources. The land use data identify areas as small as 1 acre using a 49-category 
classification scheme. The following list presents main classes included in the database: 

• Residential. 

• Commercial and services. 

• Institutional. 

• Industrial, warehousing, and wholesale trade. 

• Transportation, communication, and utilities. 

• Agricultural land. 

• Open space. 

• Vacant, wetlands, or under construction. 

• Water. 

For this analysis, the list was reduced to five classes: residential, commercial, institutional, 
industrial, and other. In order to examine the effect of mixed use development on traveler 
behavior, several dummy variables at different spatial scales (with a radius of 0.25, 0.5, and  
1 mi) were created for trip origin and trip destination, separately. These dummies were not 
significant in the model, and ultimately a measure of land use mix was most significant. Land 
use mix diversity index was estimated at different spatial scales (with radius of 0.25, 0.5, and  
1 mi). The land use mix diversity index is computed as proposed by Bhat and Gossen and 
Rajamani et al. using figure 17.(106,94) 

 

Figure 17. Equation. Land use mix diversity index. 

Where:  

Res = The area of residential land. 
Com = The area of commercial and services land. 
Ind = The area of industrial land. 
Ins = The area of institutional land. 
O = The area of all other classes. 
T = The total area around the desired location.  
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�Res

T − 1
5�+ �Com

T − 1
5�+ �Ind

T − 1
5�+ �Ins

T − 1
5�+ �OT − 1

5�
8
5

 

37 



 

The mix diversity index is zero if land use is completely homogenous with only one class. The 
mix diversity index is equal to 1 if land use is fully mixed with equal proportion of all included 
land use classes. 

Census Data 

Census data include housing, population, and employment information at the smallest possible 
spatial aggregation (tract level). Population, housing, and employment densities were calculated 
for each trip origin and destination recorded in the Chicago Household Travel Survey data. 
Figure 18 shows a map of the population density in the Chicago, IL, metro region at the  
TAZ level. 

 
Figure 18. Illustration. Population density in the Chicago, IL, metro region at the TAZ 

level from Census data. 

Transit Network Data 

Added to the land data are information from CTA, Pace (the premier suburban transit provider in 
Chicago’s suburbs), and Metra. The transit network in Chicago covers many suburbs and is 
strongly oriented toward the CBD. 

For each trip origin and destination separately, several dummy variables at different spatial 
scales (with radius of 0.25, 0.5, 0.75, and 1 mi) were created to reflect the following transit 
accessibilities: 

• Dummy variable for accessibility to CTA bus stop. 

• Dummy variable for accessibility to Pace bus stop. 
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• Dummy variable for accessibility to CTA train stop. 

• Dummy variable for accessibility to Metra train stop. 

Ultimately, due to the precision of origins and destinations for each observation, these 
accessibilities were also reduced to a simple indicator of whether there was transit within a  
0.25-mi radius of the origin or destination. This loss of resolution is due to insufficient 
observations of individuals over the course of a typical week and the aggregation of origins and 
destinations to a zonal centroid. Without knowing the precise origin and destination point of each 
traveler, it is difficult to determine exactly how accessible transit is for a given trip. Figure 19 
through figure 22 provide the geo-coded location of the CTA bus stops, Pace bus stops, CTA 
train stops, and Metra train stops, respectively. 

  
Figure 19. Illustration. Geo-coded locations of CTA bus stops. 
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Figure 20. Illustration. Geo-coded locations of Pace bus stops. 

 
Figure 21. Illustration. Geo-coded locations of CTA train stops. 
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Figure 22. Illustration. Geo-coded locations of Metra train stops. 

MODEL DEVELOPMENT AND CALIBRATION  

Mixed logit models were estimated to test combinations of variables until a satisfactory 
exploratory model was found. The final model is described in table 6. The most significant crime 
category influencing mode choice was drug use, though it was only significant in explaining 
urban transit mode choice, not suburban rail. 

Travel time and travel cost divided by income had a negative impact on mode choice as 
expected. Since theory and common sense suggest that the importance of cost should decrease 
with income, cost was divided by the income. The values of time had to be adjusted to reflect the 
income units. As the travel costs are in dollars, travel time in minutes and income in dollars per 
year, the value of time spent in travel to the value of time spent working can be calculated by 
multiplying the ratio of the parameters by 12. That is, the estimated parameters, which are used 
to generate a distribution, from which the mean can be simulated. This gives a mean ratio of 
value of time spent in travel to value of time spent working of 0.23. This is in line with obtained 
values from other studies, which suggest a value of time in Chicago for traveling of around 
$10/h, which is smaller than the mean income. 

The travel time index, a measure of congestion, is the ratio of reported travel time to free-flow 
travel time. The negative sign on this variable may indicate the self-selection of auto users versus 
choice transit users. Travelers are more likely to use transit for work trips and much more likely 
to use transit if the trips start and/or end in CBD due to the downtown-oriented transit systems. 

The effects of land use diversity and density on urban transit use (i.e., CTA) corroborate the 
findings of Cervero.(56) Origin population and destination job densities increase transit use but 
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tend to decrease suburban rail (Metra) use. This negative effect could be due to the relatively 
large catchment areas for suburban rail. The number of park and ride spaces was not a significant 
variable for either mode, which is probably due to the practice of parking on neighborhood 
streets to access transit. Similarly, origin land use mix is not a significant variable for predicting 
suburban rail, probably because of the nature of the suburban areas served. Land use mix was 
significant and positive at the destination end for both urban and suburban rail. 

In exploring model specifications, it was found that crime types were highly correlated. Detailed 
factor analysis of crime and how it influences transit use is a topic left for further research. 
Incidences of reported drug abuse tend to decrease transit use, but this is only significant for 
urban transit. The lack of significance for urban rail may be due to the differences in nature of 
the stations or opportunities for crime between these mode types. 

Table 6. Mixed logit mode choice model. 

Variable Estimate 
Standard 

Error t-Value 
Intercept 
CTA -3.350 0.268 -12.518 
Metra -6.440 0.434 -14.854 
Dynamic travel time -0.014 0.001 -14.452 
Standard deviation of 
travel time 

0.031 0.012 8.213 

Travel Time Index 
CTA -0.091 0.012 -7.447 
Metra -0.086 0.021 -4.094 
Cost/Income -1.191 0.348 -3.419 
Ratio of Vehicles to Household Members 
CTA -3.361 0.148 -22.743 
Metra -0.735 0.176 -4.180 
Trip Purpose is Work 
CTA 1.149 0.094 12.196 
Metra 1.570 0.178 8.831 
Start and/or end in CBD 
CTA 2.308 0.130 17.788 
Metra 4.356 0.243 17.889 
Transit Accessibility of Destination 
CTA 0.544 0.134 4.062 
Metra 0.104 0.173 0.597 
Walk Score of Origin 
CTA -0.007 0.004 -1.983 
Metra 0.007 0.005 1.539 
Walk Score of Destination 
CTA 0.011 0.003 3.608 
Metra 0.016 0.006 2.915 
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Origin End Population Density (1,000/1 mi) 
CTA 0.051 0.000 5.851 
Metra -0.097 0.000 -6.261 
Destination End Job Density (1,000/1 mi) 
CTA 0.080 0.000 5.490 
Metra -0.029 0.000 -1.030 
Origin Land Use Mix (0.25) 
CTA 1.713 0.306 5.604 
Metra -0.741 0.453 -1.635 
Destination Land Use Mix (0.25) 
CTA 0.842 0.307 2.743 
Metra 1.484 0.602 2.467 
Drug Abuse Crimes/1,000 Population (0.25 mi) 
CTA -6.807 0.003 -2.262 
 Metra -0.200 0.002 -0.100 

 
Based on the results presented in the table, the log likelihood is -2784.4, and the McFadden R2 
value is 0.484. 

LIMITATIONS 

The Household Travel Survey data used in this analysis were aggregated by zone, and origin and 
destination points were designated to protect the privacy of survey respondents. This kind of 
aggregation results in a loss of specificity, and measures such as land use diversity and transit 
accessibility are not exact for each individual. 

Another limitation of the data and model is the inability to capture longer-term higher order 
decisions that may be influenced by policy. For instance, a number of attributes were not 
significant at the origin but were significant at the destination. This may reflect self-selection of 
respondents in that their origins were fixed whereas the destinations (at least for non-work trips) 
were somewhat more flexible. The opposite could be said for work trips: employees are not 
always able to select their work location. The selection of residential and work locations should 
be understood in the context of shorter-term decisions. 

Recommended Next Steps and Research 

There has been relatively little comprehensive cross-disciplinary exploration of the quality of life 
implications of travel. The physical activity afforded by walk trips—for whatever purpose—is of 
considerable interest to the public health community.(107,108) Research and implementation of 
environments that promote physical activity exist in Atlanta (e.g., strategies for metropolitan) 
and Seattle (e.g., land use, transportation, air quality, and health), and the recent panel studies of 
these travelers could be of great value for future research in non-network factors and active 
transportation. Crime is difficult to measure and even harder to predict, so the studies discussed 
here offer only snapshots of elements of the relationship between crime and transit mode choice. 
Capturing data on public health and safety in conjunction with travel behavior studies could 
illuminate these relationships. As in this study, such data may be combined from multiple 
sources, but the quality and level of capture of each data element cannot be overlooked. Open 
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data may be the key to effectively integrating behavioral methods and concepts from psychology, 
sociology, geography, and transportation. 

Such analyses require not only better measures of the walking environment and safety statistics, 
but also capturing trips by alternative modes. Passive data collection methods such as GPS and 
accelerometers on cell phones could be used to capture these trips without burdening the study 
subjects.(109) Longitudinal data collection is especially needed to capture self-selection and 
strategic behavior on the part of travelers, which influences the magnitude and significance of 
non-network effects at both origin and destination, and changing attitudes of travelers over time. 

The case studies presented in chapters 5 through 8 represent advances in the state of the art and a 
significant step toward advancing the state of the practice in capturing user behavioral responses 
to operational and management interventions in assessment and simulation models. However, 
they are limited by the lack of sufficient data to calibrate all parts of the behavioral models. 
Conversely, the case study presented in this chapter highlights and leverages new data sources 
that are publically available and ready to be integrated in tools and models at very low cost 
which would allow improving current models as well as the accuracy of predictions without 
costly survey work. 

Going beyond the immediate application presented in this chapter, the Internet has profoundly 
transformed activity engagement by creating virtual worlds or environments for activities, such 
as work and shopping, commonly pursued in the physical world. For travel behavior and time 
use analysts, virtual environments provide new opportunities for investigating decisions within a 
potentially experimental setting but also new opportunities to obtain rich data sources to 
integrate within models. Given the increasing engagement in online activities, such as social 
networking or games, understanding time use and travel decisions within these virtual 
environments may lead to an improved understanding of time use and travel in the physical 
environment. Individuals are increasingly engaging in virtual world activities, sometimes 
simultaneously or in conjunction with physical world activities.(110,111) Considering a set of 
activities that are engaged in the physical and a set in the virtual world, the set of activities  
that occur in both worlds can be conceptualized as the intersection of these two sets. As the 
opportunities for activity engagement in the virtual world continue to grow, a gradual eclipsing 
between these two worlds occurs. 

Travel behavior and time use analysts have shed some light on this eclipsing by examining the 
role of information and communication technologies for work-related activities, from both a 
work management perspective and a travel/spatial location perspective. (See references 112–
116.) For future research, such data from virtual worlds could be utilized and integrated further. 
Areas that come to mind include the following: 

• Quality indicators from social networking sites such as Foursquare® or Yelp® could be 
used to build additional attributes for location choice models and/or location choice  
set generation. 

• Real estate Web sites with an API, such as Trulia or DreamTown, can be used for 
residential location choice models. 
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• Data from online travel portals can be used to generate long-distance location choice sets. 

• Activity patterns could be studied through social rating sites by looking at similarity 
patterns between locations that are visited by the same users. 
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CHAPTER 5. ATDM CASE STUDY 

INTRODUCTION 

The traveler choice focus area targets a traveler’s higher-level predictive strategic choices 
influenced by a range of variables such as travel time reliability, congestion (recurrent and non-
recurrent), weather, pricing, availability of transit services and parking, and sidewalks. Traveler 
choices in network and non-network conditions can be influenced by dynamic factors (e.g., 
travel time, level of congestion, and weather that travelers will encounter on trips) and static 
factors (e.g., availability of transit services, parking, sidewalks, and bike routes). The capability 
of existing transportation analysis tools to accurately model and simulate traveler choices is 
limited due to the lack of adequate methodologies and reliable data. Consequently, it is critical to 
understand choices made by travelers under various circumstances and the impact of these 
choices on the transportation system. 

Within the area of ATDM, the study focused on identifying information and data that can inform 
the development of factors that are critical to bicycle riders’ travel decisionmaking. The 
examination included a review of information and data collected by local areas in regional case 
studies on active transportation demand and supply travel information and identify available data 
and information that may inform the choices that travelers make about under what circumstances 
bicycle trips occur. This work builds on previous efforts related to bicycle travel data in the 
Metropolitan Washington region conducted by the Metropolitan Washington Council of 
Governments (MWCOG) as well as the Southern California region. 

CURRENT AGENCY PRACTICES 

The study reviewed the current practice and availability of active transportation planning data by 
region by conducting a literature search of publicly available documents, reports, and data. The 
Web sites of the significant transportation planning agencies within each region, including the 
MPO, large cities, and urban counties were reviewed. The study included telephone interviews 
with appropriate transportation planning staff of local and regional transportation planning 
agencies. The goal of the interview was to collect information on current practices in planning 
for active transportation and identify available data that the agencies have collected or used for 
this purpose. Some local bicycle travel data were requested and collected from government 
transportation planning agencies as examples of the state of the professional practice and the 
state of the art are for bicycle planning data collection efforts. 

The following four urban metropolitan regions in the United States were examined for this effort: 

• Washington, DC, metropolitan region. 

• Southern California metropolitan region (Southern California Association of 
Governments (SCAG) region). 

• San Francisco Bay area region. 

• Cleveland region. 
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The initial review of existing local and regional transportation planning agency reports found 
that bicycle travel data were being collected and used to some degree for descriptive purposes. 
Data collected from the four metropolitan regions confirm that bicycle travel is increasing both 
as an active transportation mode and as a means of travel demand management. Bicycle travel 
supply and demand variables collected from local agencies varied in quality and robustness. 
Some agencies are beginning to integrate bicycle use data into travel forecasting, but simple 
trend extrapolation is the most common use. Changes in road capacity usage, particularly in 
larger urban areas, has the potential to impact automobile travel capacity and travel speeds along 
key urban street corridors. 

The use of bicycle travel data for travel demand forecasting purposes was more limited. Leading 
edge travel demand modeling agencies are incorporating bicycle travel into overall regional 
travel forecasting, but significant data gaps limit the completeness and robustness of locally 
collected bicycle data for these purposes. 

Information about data collection efforts in the San Francisco Bay Area Rapid Transit (BART) 
Agency includes the following: 

• Station profile studies. 

• Customer surveys. 

• Passenger online surveys. 

• Bike station surveys. 

• Bicycle parking inventories. 

Regional household travel surveys, such as the one conducted by MWCOG in 2007–2008, 
included data collection on the bicycle mode of travel. Some examples of data that were 
collected or estimated based upon the household travel surveys include the following: 

• Number of bike trips. 

• Bike trip distance. 

• Percentage of population for whom biking is the primary travel mode. 

• Percentage of daily trips by biking. 

• Percentage of work trips by biking. 

• Percentage of school trips by biking. 

• Percentage of employers providing bike/pedestrian facilities or services. 
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• Type of bikeway mostly used (off-road bike trails versus on-road lanes). 

• Percentage of daily trips by walking. 

Other more specialized regional transportation planning studies collected data on bicycle modes 
as part of examinations of accessibility of neighborhoods and of transit stations. For example, in 
the Washington, DC, region, an internal study of the transportation and land use interaction 
included consideration of access to the bicycle mode and the potential use of the bicycle mode 
under different scenarios for transportation and land use in the region. Another internal study in 
the Washington, DC, region for the regional rail transit agency (Metrorail) collected and 
estimated data on the following: 

• Bicycle infrastructure availability. 

• Mode share of biking for Metrorail access by station type. 

• Mode share of walking for Metrorail access by station type. 

FRAMEWORK FOR EVALUATION 

As discussed in chapter 4, the policies of interest in the realm of ATDM call for a deeper 
understanding of mode use in the context of individuals and household activity engagement 
decisions and behaviors. As a result, some of the same factors discussed in chapter 4 in relation 
to transit mode use and the influence of network and non-network factors, particularly land use, 
urban design, and safety/security perceptions are applicable in this case study, as well. Some of 
the main differences arise from the particular characteristics of active modes, especially bicycles, 
including their perceived (and actual) safety when running unprotected along with vehicular 
traffic, the physical effort that needs to be exerted in connection with frequent stop-start patterns, 
and the relative lack of protection vis-à-vis inclement weather. However, the basic structure of 
the modeling frameworks remains the same, with activity-based models providing an appropriate 
construct and tools to examine bicycle mode use as part of auto demand management strategies. 

In the short term, it is expected that travelers’ perceptions, prior experience, and built 
environment factors will influence mode choice in general and bicycle use in particular. 
However, in the medium- to long-term horizons, policy will indirectly influence further user 
decisions. This is illustrated in figure 23. 

 

49 



 

 
Figure 23. Illustration. Modeling framework for analyzing ATDM policies. 

BEHAVIORAL DIMENSIONS AND IDEAL DATA 

Relevant Bicycle Use Patterns 

There is a considerable need for additional data to be collected within individual metropolitan 
regions regarding patterns of bicycle travel in order to increase the understanding and modeling 
of bicycle travel behavior. The overall sense obtained from the review of existing data, studies, 
and current planning practices is that within the past decade, cities and regions around the United 
States have begun collecting some bicycle data that are locally specific but are constrained by 
funding, resource, and expertise limitations. One example of this is in the San Francisco Bay 
area, where data on bicycle travel speeds were not available for modeling purposes. As a result, 
the staff from the county planning agency reported that individual staff members would spend 
time on weekends and other non-work hours riding their own bicycles on different streets in 
order to estimate bicycle travel speeds for these links that could then be used in a travel demand 
modeling framework. 

In addition, bicycle trips may constitute only one segment or link of a longer multimodal trip.  
As a result, there is a need for more data and understanding about metropolitan travel (e.g., 
commuting) where a bicycle may provide one trip segment of a multimodal trip. 

Previous work has identified that bicycle travel includes different types of trips with different 
characteristics. Good active transportation data should include robust and reliable information on 
different types of bicycle trips, including the following: 

• Commuting trips that are completely on bicycle mode. 

• Non-commuting bicycle use for short trips. 

• Longer distance bicycle on public transportation trips. 

 

50 



 

Examples of the travel data that this project sought to identify and analyze included the 
following: 

• Commuter trips bike mode share. 

• All trips bike mode share. 

• Bike trips for the region disaggregated on a county by county basis. 

• Trip distances, including access segment, bicycle segment, and linked line-haul public 
transportation segments. 

• Mode shift from pedestrian and automobile to bicycle mode. 

• Baseline mode splits for active transportation modes and induced (new trips) on  
bicycle mode. 

• Bicycle trip counts at specific locations, station areas, and cordons. 

• Trip purposes for different bicycle trips. 

• Bicycle travelers access to motor vehicles. 

The findings of this study are that while basic bicycle use data elements are being collected to an 
increasing degree by local transportation planning agencies, these data are of limited use for 
travel demand forecasting. Since mode shift data and data on other traveler attributes are usually 
not collected, it is difficult to measure and model a trend in mode shift or forecast forward in 
time based on historical trends. As a result, to the degree that travel demand forecasting is 
occurring for the bicycle mode, they are often being forecasted or modeled using assumptions 
about future mode shares and based on simple trend extension. 

Since most local governments around the United States rely on federally designated and 
federally funded MPOs for travel demand forecasting, it is often the case that mode-based travel 
forecasts are not available at a city or county level unless they are obtained from regional MPO 
forecasts. Local governments appear to be focused on developing plans for infrastructure 
improvements related to bicycle travel but do not always link them to the travel demand 
forecasting and data. This appears to be somewhat different for cities and counties that have 
greater in-house travel demand analysis and forecasting capabilities. San Francisco is an  
example of this, where the central city and county maintains its own advanced travel demand 
forecasting capabilities. 

This review of existing practice suggests that even amongst the more progressive MPOs, 
inclusion of bicycling and active transportation options as integral parts of activity-based model 
systems remains in the very early stages. 
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Data Needs for Incorporating Bicycle Use into Travel Demand Forecasting 

Some counties and metropolitan regions that conduct travel forecasting and modeling 
incorporate limited bicycle capacity and bicycle travel usage data into their forecasting on a 
limited basis (e.g., general mode shares). Without sufficient data to calibrate or corroborate the 
forecasting or modeling data, these travel forecasts may be limited in usefulness. 

The study identified one example by an MPO where bicycle travel was attempted to be forecast 
forward in time. Discussion of this example highlights the data needs and the data collection 
gaps that exist in order for more robust travel demand forecasting to occur with respect to bicycle 
travel. The Washington, DC, MPO MWCOG staff developed a spreadsheet model to estimate the 
benefits and costs of bicycle travel using a planned bikeshare system. The model was developed 
and used as part of a process to apply for Federal grant support for the system. 

Bicycle sharing systems are increasingly popular and diverse. A number of bicycles are made 
available for shared use by individuals who do not own bicycles. Public bicycles are a mobility 
service, mainly useful in urban environments for proximity travels. 

It has been estimated that as of 2010, there were more than 200 such schemes operating 
worldwide. The early attempts at unregulated bikeshare programs encountered numerous 
problems such as theft and vandalism. In 1993 in Cambridge, UK, the majority of the fleet of 
300 bicycles was stolen in one program, and the program was abandoned. 

The latest generation of this program includes bicycles that are kept at self-service terminals 
throughout the city. Individuals registered with the program identify themselves with their 
membership card (or a smart card, cell phone, etc.) at any of the hubs to check out a bicycle for a 
short period of time, usually less than 2 h. In many schemes, the first half hour is free, such as 
the Capital Bikeshare program in Washington, DC.(117) Additionally, many of the membership 
programs are being operated through public-private partnerships. Several European cities, 
including the French cities of Lyon and Paris as well as London, Barcelona, Stockholm and Oslo, 
have signed contracts with private advertising agencies that supply the city with thousands of 
bicycles free of charge (or for a minor fee). In return, the agencies are allowed to advertise both 
on the bikes themselves and in other select locations in the city. 

The spreadsheet model estimates the regional bikeshare use on the then planned (now active) 
bikeshare system in the Washington, DC, metro region. Some examples of basic data elements 
that were estimated or assumed in the spreadsheet model include the following:(117) 

• Number of bikes. 

• Number of bikes added each year. 

• Number of riders per bike. 

• Daily bicycle riders. 

• Number of trips per day. 
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• Average bike trip length (miles). 

• Bicycle miles traveled per day. 

It is evident by comparing the data from the spreadsheet analysis tool with the actual data that 
are being collected in the Washington, DC, region that there is a significant gap between the 
bicycle travel data that has been found to be collected and the data needs for even a relatively 
simplified spreadsheet estimation tool for bicycle travel. 

The review of existing data and studies found some promising data sources that potentially could 
be adapted to be incorporated into a more robust travel demand forecasting framework. Two 
examples of this are specialized travel surveys and specialized service operator data from both 
public transportation agencies and bicycle service providers (e.g., bikesharing operators). 
Specialized travel surveys ask respondents a set of standardized questions and collect detailed 
data (e.g., time of day, location, etc.) that could be used to develop and calibrate models on 
general relationships between bicycle travel and other variables (e.g., demographic, trip purpose, 
time of day, etc.). Specialized service operator data (e.g., Capital Bikeshare and Cleveland 
Transit) incorporate origins and destinations and, as a result, can be linked with geographic  
and other datasets (e.g., weather) and used to estimate travel speeds. In the absence of such 
specialized data, travel speeds for bicycle travel must be collected on a link-by-link basis and  
is extremely time intensive (e.g., Santa Clara County in the San Francisco Bay area).  
Discussion and examples of the different data types and elements found are presented in the 
following section. 

CHARACTERIZATION OF BICYCLE USE PATTERNS BASED ON AVAILABLE 
DATA 

Data Sources and Elements 

Some local governments collect bicycle count data for intersections and corridors of interest. The 
bicycle count data are often limited in usefulness since they are not linked to mode shift and 
other data attributes of travelers. In addition to a review of regional transportation planning data 
and studies, local government data collection and studies were also reviewed. Many local 
governments have been developing a bicycle master plan that focuses on the development of 
additional bicycle infrastructure. However, these plans are not strongly linked with historical 
bicycle use data and bicycle travel forecasting. For example, in Southern California, all six 
counties in the MPO region either have bicycle master plans or non-motorized transportation 
plans that include the bicycle mode.(118) Transportation planning for the bicycle mode has often 
been incorporated into broader studies by local governments related to TDM, in which bicycle 
use is included as one element of a larger portfolio of TDM strategies and efforts. In these cases, 
since the bicycle mode is only one element of a larger set of topics, specific detailed historical 
data on bicycle travel were not usually collected, nor were specific travel demand forecasts made 
for the bicycle mode. 

In spite of the limited amount of data collection and robust travel forecasting with respect to 
bicycle traveling, local and regional transportation planning agencies often incorporate planning 
processes and committees with respect to bicycle, and increasingly, pedestrian travel. As a result, 
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while the political and organizational will to conduct bicycle planning appears to exist at the 
local and regional level, a commensurate degree of data collection and data analysis does not 
seem to be arising, perhaps due to limited resources for these efforts. 

Selected niche data collection is occurring for specific segments of bicycle travel of key interest 
to organizations. Examples of this include bikesharing system usage data collected by the 
operating agency, bicycle on rail system data collected by the public transportation agency in 
specialized studies, and bicycle on bus data collected as part of normal bus transit operations.(119) 
Some examples of promising and successful local and regional bicycle travel data collections 
efforts identified include the following: 

• Los Angeles County Metropolitan Transportation Authority (LAC MTA) study collected 
data of last mile bicycle trips that are linked with transit trips.(120) This focused study 
collected data from intercept surveys of bicyclists at a subset of Metrorail stations. 
Counts and surveys were conducted during weekday morning commute and weekday 
evening commute periods. Volunteers collected 605 usable surveys and counted  
2,305 bicyclists at the 19 transit stations that were part of the study. 

• Data on bicycle sharing in the Washington, DC, region, which is one of the first regions 
of the country to have an operational bicycle sharing system.(117) Capital Bikeshare in 
Washington, DC, began operations in 2010 with 1,100 bicycles at 114 stations 
throughout Arlington, VA, and Washington, DC. The system has expanded to  
1,670 bicycles at 175 stations. Membership has reached 19,000 persons, making it the 
largest bikesharing organization in the United States as measured by membership. 

Since bikesharing relies to a large degree on technology, there is potential for significant data  
to be available for planning purposes based on the actual database of use by members. In 
addition, if confidentiality issues can be overcome, the trip patterns of individual members may 
also be linked with other attributes of the bikeshare users. Capital Bikeshare makes data about 
usage patterns available on its Web site and also conducts regular surveys of its members. 

Bikesharing is expanding rapidly across the United States. Plans are being implemented for 
operation of bikesharing systems in both the San Francisco Bay area and over a larger portion of 
Los Angeles, as well as other parts of the United States. 

Data collected by the San Francisco County Transportation Authority (SFCTA) and the San 
Francisco Bicycle Coalition on the GPS-data related to routes taken for bicycle commuter trips. 
With funding from a California Department of Transportation (Caltrans) planning grant, SFCTA 
was able to work with San Francisco Bicycle Coalition member volunteers who agreed to travel 
on their regular bicycle commuting routes with a GPS device. With the information from these 
GPS tracking of bicycle commuters, SFCTA was able to obtain and incorporate more and better 
information on bicycle commuting route choice and time of day patterns than they had available 
before the study. 

The ideal robust data collection for bicycle travel for a regional or local transportation planning 
effort is one where at least three types of data elements could be identified and collected. The 
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following data needs to be local and specific in order to be incorporated into travel demand 
forecasting methods:  

• Bicycle use basic data elements. 

• Bicycle mode shift table data elements. 

• Bicycle travel linked to other traveler attributes. 

The first type, count and overall usage, is discussed in the following subsection using counts in 
the Washington, DC, metropolitan area, including Arlington, VA, as well as counts in the Los 
Angeles, CA, area. The second type, data that could support mode shift analyses, is discussed in 
connection with survey data of bike on rail users in both the Los Angeles and San Francisco, CA, 
areas. The third type, explicitly linking traveler and service attributes to the likelihood of bicycle 
rail usage, is illustrated using data from Cleveland, OH. 

Bicycle Use Count Data: Washington, DC, and Southern California 

The bicycle mode still contributes a relatively small share of overall trips and travel distances at 
a national scale and also at smaller geographies within the four individual metropolitan regions 
examined. There are some cities that have relatively higher mode shares for bicycle commuting, 
but bicycle use is small overall. At the same time, bicycle use has been growing in many cities in 
recent years, and cities have been planning and implementing dedicated bicycle infrastructure. 

Local governments, including both cities and counties, are increasingly collecting basic bicycle 
travel use data. One example of basic bicycle use data are intersection bicycle count data from 
Arlington County, an inner-ring suburb in the Washington, DC, metropolitan region. Another 
example is corridor-based bicycle counts relative to time of day in Washington, DC.  

In Arlington County, the local government operates 10 counter locations for bicycle lanes and  
14 counter locations on highly used trail locations. The basic bicycle use data collected include 
the number of bicycles and the direction of travel. The data are used for general trend analysis  
as a justification for future investments in bicycle infrastructure. The data collected are not 
currently used for travel demand modeling purposes. There has been an increasing interest in 
collecting and using bicycle travel data within the county government. 

Within Washington, DC, the local council government approved a complete streets policy in 
October 2010. There are 40 locations where bicycle counts are collected by the Washington, DC, 
Department of Transportation, including 9 or so bridge locations and other strategic locations. 
The data are used to assess general trends and to help increase understanding of usage of the 
bicycle and road facilities. The data are not yet incorporated into travel demand forecasting. 
Some specific corridor studies have included bicycle use data. The bicycle counts program has 
been funded through technical assistance funding from MWCOG, the regional MPO. MWCOG 
also keeps the regional travel demand model that is the general forecasting model for the region. 
Table 7 shows an example of some of the results of basic bicycle and pedestrian use data 
collected within Arlington County at a specific intersection during a morning peak hour period. 
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Table 7. Basic non-motorized use data element: intersection non-motorized counts in 
Arlington County, VA. 

Date/Time 

Bicycle Counts by Location 
Custis 

Rosslyn 
Custis Rosslyn 

Pedestrians 
Custis Rosslyn 

Bikes 
Mon, Jan 3, 2011, 06:00 a.m. 6 0 6 
Mon, Jan 3, 2011, 06:15 a.m. 8 3 5 
Mon, Jan 3, 2011, 06:30 a.m. 13 2 11 
Mon, Jan 3, 2011, 06:45 a.m. 18 3 15 
Mon, Jan 3, 2011, 07:00 a.m. 23 2 21 
Mon, Jan 3, 2011, 07:15 a.m. 19 4 15 
Mon, Jan 3, 2011, 07:30 a.m. 27 3 24 
Mon, Jan 3, 2011, 07:45 a.m. 39 4 35 
Mon, Jan 3, 2011, 08:00 a.m. 36 6 30 
Mon, Jan 3, 2011, 08:15 a.m. 40 6 34 
Mon, Jan 3, 2011, 08:30 a.m. 43 9 34 
Mon, Jan 3, 2011, 08:45 a.m. 35 6 29 
Mon, Jan 3, 2011, 09:00 a.m. 32 8 24 
Mon, Jan 3, 2011, 09:15 a.m. 23 8 15 
Mon, Jan 3, 2011, 09:30 a.m. 18 7 11 

Data for this table were provided by Arlington county staff and is available to the public (public domain). 

Selected summary results and data from Washington, DC, bicycle counts data collection are 
shown in figure 24 through figure 26. These graphs generally reveal the increasing trends in 
bicycle use and trips. 

 
Data for this figure were provided by DDOT staff and is available to the public (public domain). 

Figure 24. Graph. Increase in hourly bicycle counts on specific street corridor from  
2004–2012 in Washington, DC.  
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Data for this figure were provided by DDOT staff and is available to the public (public domain). 

Figure 25. Graph. Increase in peak hour bicycle counts on specific street corridor from 
2004–2012 in Washington, DC. 

 
Data for this figure were provided by DDOT staff and is available to the public (public domain). 

Figure 26. Graph. Average peak hour bicycle counts on specific street corridor per mile of 
bicycle lanes from 2004–2012 in Washington, DC. 

Another example of data being collected for bicycle travel consists of specialized trip data 
collected by major public transportation agencies in both northern and southern California.  
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The data examples show data collection from a LAC MTA study of last mile bicycle trips that 
are linked with transit trips.(121) These data provide a good example of the existing data that have 
been collected at a local level within one region of the country. 

Table 8 shows data collected from LAC MTA of the number of Metrorail stations where 
bicyclists boarded or alighted. 

Table 8. Number of Metrorail stations where bicyclists boarded or alighted, by rail line; 
LAC MTA. 

Bicyclist Boardings and 
Alightings by Line 

Number of 
Stations on 

Line 

Number of Stations 
Where Bicyclists 

Boarded or Alighted 

Percent of 
Stations 

Represented 
Red line/purple line 16 16 100 
Blue line 22 22 100 
Green line 14 14 100 
Gold line 21 19 90 
Total 73 71 97 

Data for this table were provided by LAC MTA staff and is available to the public (public domain). 

The unpublished study estimated that bicyclists made up 1.3 percent of all annual Metrorail trips. 
In terms of mode shift, the study found that 27 percent of bicycle-rail trips replaced a motor 
vehicle trip. Additionally, 13 percent of bicyclists report that they would not take the trip if they 
did not have the option of making the combined bicycle-rail trip. On average, bicyclists traveled 
2.2 mi to access the Metrorail stations. As a result, LAC MTA was able to obtain more 
information on the bikeshed of Metrorail stations. 

Only to a limited degree was bicycle use data collected by local governments linked with other 
traveler attributes. In specialized cases of public transportation agencies, some effort has been 
made in leading practice examples to collect additional traveler attribute data to link to bicycle 
mode use. For example, in the case of the Los Angeles County Bicycle Transit study, the trip 
purposes of bicycle mode users were included as part of the survey data collected. 

Table 9. Bicycle boardings data at transit stations: LAC MTA blue line. 
Row Labels Count of Boarding 

Blue 180 
103d Street 3 
1st Street 1 
7th/Metro 30 
Anaheim 5 
Artesia 1 
Compton 3 
Del Amo 25 
Firestone 3 

Data for this table were provided by LAC MTA staff 
and is available to the public (public domain). 
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Mode Shift Analysis: Los Angeles and San Francisco Bike-on-Rail User Surveys 

The unpublished LAC MTA study is a good example of more robust data collection, since some 
information was collected that could be used for mode shift analysis. Table 10 and table 11 show 
to what degree bicyclists had access to motor vehicles and the results of a question that asks 
bicycle riders what mode they might have used if not for the availability of the bicycle-rail trip, 
respectively. 

There is a need to examine actual mode shift to bicycle from other modes to ascertain changes 
over time in order to accurately estimate, model, and better forecast future travel. Without a good 
basis for estimating mode shift to the bicycle mode, it is clear that the future estimates would be 
limited in value and robustness.  

Table 10. LAC MTA bicycle transit survey responses to motor vehicle access question, 
“How often do you have access to a motor vehicle?” 

Response Number Percent 
Always 161 29.76 
Sometimes 121 22.37 
Rarely 60 11.09 
Never 199 36.78 
Total 541 100 

Data for this table were provided by LAC MTA staff and is 
available to the public (public domain). 

Table 11. LAC MTA bicycle transit survey responses to motor vehicle access question, “If 
you did not have your bike, how would you get from your origin to the first station?” 

Response Number Percent 
Walk 300 42 
Bus 258 35 
Drive alone 55 8 
Train/subway/light rail 32 4 
Carpool 19 3 
Drop off 18 3 
Other (please specify) 13 2 
Would not make the trip 24 3 
Total 719 100 

Data for this table were provided by LAC MTA staff and is 
available to the public (public domain). 

Some of the data elements related to mode shift that were assumed or estimated by MWCOG 
include the following:(122)  

• Percentage of riders shifted from auto to bike. 

• Percentage of riders shifted from bus/rail to bike. 

• Percentage of riders who also use transit. 
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• Percentage of riders with increased access to transit. 

• Percentage of bike riders as new transit riders. 

• Percentage of new transit trips coming from auto. 

• Average transit trip length. 

• Percentage of trips not made before. 

• Percentage of riders shifted from walk to bike. 

• Percentage of riders shifted from taxi to bike. 

Data are available from an MWCOG analysis of BikePODs, and the following mode shift 
percentages off of baseline were assumed for one bikeshare system similar in size to that in 
Montreal, which contains roughly 5,000 bicycles and 400 stations:(122) 

• 8 percent of bike riders shifted from SOV to bike. 

• 3 percent of riders shifted from taxi to bike. 

• 8 percent of bike riders as new transit riders. 

• 10 percent of new transit trips shifted from SOV to transit. 

In 2010, MWCOG proposed to develop a regional bikesharing system for the Washington, DC, 
area. MWCOG conducted a benefit-cost analysis for the proposed system in application for 
funding from the Transportation Investment Generating Economic Recovery II Grants Program. 

In developing the Washington, DC, Bicycle Sharing Spreadsheet Tool, it became clear that no 
applicable data would be available from cities in the United States, since the Washington, DC, 
region was one of the first regions in North America and the United States to implement 
bikesharing. As a result, the estimation process relied on adapting data from European cities’ 
experience with bikesharing. Example mode shift values for Paris, France, and London, United 
Kingdom, are presented in table 12. It is clear that the validity of this data for estimating future 
bikesharing in a U.S. city like Washington, DC, would be limited and that a preferable situation 
would be data collection of actual bikesharing use from U.S. cities. 
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Table 12. Example of comparison data from other cities: mode shift to bikeshare.(122) 
Mode of 

Transportation 
Paris 

(percent) 
London 

(percent) 
Average 
(percent) 

Transit 65.0 34.0 50.0 
Walk 20.0 21.0 26.0 
Car/motorcycle 8.0 6.0 7.8 
Personal bike N/A 6.0 5.0 
Taxi 5.0 N/A 2.5 
No travel 0.0 23.0 8.3 
Total 98.0 90.0 99.6 

N/A = Not applicable. 

Table 13 provides an example of bicycle use data linked to other traveler attributes, namely the 
trip purpose for which the bicycle is used in connection with an intermodal metro rail trip in the 
Los Angeles, CA, metropolitan region. 

Table 13. Example of bicycle use data linked to other traveler attributes: bicycle trip 
purpose data from Los Angeles County. 

Bicyclist Entering Station After 
Traveling From… 

AM 
Weekday 
(percent) 

PM 
Weekday 
(percent) 

Total 
(percent) 

Doctor, dentist, or other personal business 0 3 1 
Family or friend’s house 1 6 5 
Home 90 22 58 
Store, restaurant, movies, or other 
shopping and entertainment 

1 5 4 

Work 5 54 27 
School 1 7 4 
Other 0 2 2 
Total 100 100 100 

Data for this table were provided by LAC MTA staff and is available to the public (public domain). 

Another example of the specialized data collected by a public transportation agency is a study by 
the BART Agency entitled, BART Bicycle Plan: Modeling Access to Transit. Like the SFCTA 
study, the study was funded by a Caltrans planning grant.(123) 

An example of mode share information that is collected by a public transportation agency is data 
from the BART Agency related to mode shares for specific rail stations on the system.(121) Based 
on data collected from two station profile studies with a 10-year interval between the data 
collection, BART has been able to document bicycle mode shares for individual stations for the 
two study years as well as interpolate a growth rate in bicycle mode access to the stations. Data 
collection from these studies is a promising approach to obtaining data for travel demand 
forecasting for bicycle-rail transit trips. 

As part of a larger study, BART developed a bicycle investment tool, which is intended to help 
BART and other rail transit operators in the San Francisco Bay Area with estimating the effects 
of bicycle-related investments on bicycle access rates at individual rail stations in order to 
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compare costs of bicycle-related investments with the cost of providing more automobile 
parking.(124) The BART system overall has established a goal of doubling the bicycle access for 
regional trips from approximately 4 to 8 percent by 2022, and the analysis tool is intended to aid 
in this effort. 

Cleveland Bicycle on Bus Boardings 

One of the more promising examples of modeling a subset of bicycle trips is in the Cleveland 
metropolitan region. An academic study conducted by researchers at Temple University 
estimated a regression model to identify what factors predicted bicycle-bus trips.(125) 

The Greater Cleveland Regional Transit Authority (GCRTA) through its operations had a 3-year 
dataset of over 160,000 trips with bicycle on bus boardings (BoBBs) between 2008 and 2011. 
The research study sought to answer the following two questions: 

• On a typical day in the operations of a large public transit system, what determines the 
number of bus riders who decide to travel with their bicycles? 

• What factors influence the highly variable number of BoBBs observed on GCRTA’s 
motor bus network in recent years? 

Similar to the case of bicycle-rail transit travelers in Los Angeles County, the bicycle on bus 
travelers in the Cleveland, OH, region represent a subset of overall bicycle trips within a region. 
At the same time, since the public transportation operator has a means and desire to collect data 
in the course of operations, this example is unusual in that it includes a 100 percent sample of all 
bicycle trips within the subset of trips in question. For those buses with bicycle racks installed, it 
was possible for GCRTA to collect and maintain data on the BoBB trips. A summary of the key 
data obtained is shown in table 14. 
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Table 14. Summary of Cleveland, OH, BoBB data.(124) 

Year Daily BoBBs 

Daily Unlinked 
Passenger Trips 

(UPTs) 
BoBBs/ 

1,000 UPTs 
Non-Work Days 
2008  9,185   5,880,700  1.56 
2009  8,621   5,675,931  1.52 
2010  7,803   4,735,601  1.65 
2011  8,755   4,794,631  1.83 
Percent change 2008–2011 -4.7 -18.5 16.9 
Work Days 
2008  36,170   43,167,714  0.84 
2009  30,385   32,520,479  0.93 
2010  30,298   31,580,559  0.96 
2011  31,858   32,404,132  0.98 
Percent change 2008–2011 

 
-11.9 -24.9 17.3 

All Days 
2008  45,355   49,048,414  0.92 
2009  39,006   38,196,410  1.02 
2010  38,101   36,316,160  1.05 
2011  40,613  37,198,763 1.09 
Percent change 2008–2011 -10.5 -24.2 18.1 

 
The study found that the number of BoBB travelers showed seasonal variation, with the lowest 
levels in the winter and highest levels in the summer. Use also varied by bus route. 

While data on individual traveler attributes were not part of the dataset, the researchers were able 
to develop a model predicting what external factors had a significant influence on bicycle on bus 
trips. A summary of the major determining factors is shown in table 15. 

The researchers concluded that weather was the most important variable in predicting the 
number of daily BoBBs. For every increase of one degree Fahrenheit in the mean daily 
temperature, there was an average of 2.21 more BoBBs. In addition, the occurrence of  
significant levels of precipitation was associated with an average of 22.06 fewer BoBBs. 
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Table 15. Example of bicycle use data linked to other traveler attributes: bicycle trip 
purpose data from Los Angeles County. 

 
BoBBs UPTs 

Mean temperature (degrees Fahrenheit) (+) Large positive (–) Very small negative 
Precipitation (dummy variable, 1 ≥ 0.10 inch) (–) Small negative (+) Very small positive 
Standard bus fare (cents) (+) Small positive (+) Small positive 
Price of gallon of gasoline (in cents) (+) Small positive (+) Small positive 
Vehicle revenue miles of service (hundreds of 
miles) 

(+) Medium positive (+) Large positive 

Percentage of outcome variable variation 
explained by model 

67.4 percent 88.5 percent 

Data for this table were provided by LAC MTA staff and is available to the public (public domain). 

SUMMARY AND CONCLUSIONS 

This case study focused on identifying information and data to help understand the factors 
underlying traveler choices to use bicycling as an active transportation mode as well as the 
development of models of bicycle mode shift and usage patterns that may be incorporated in 
regional and operational travel demand forecasting frameworks. The examination included 
review of information and data collected by local areas in regional case studies consisting of the 
following urban metropolitan regions: Washington, DC, region, Southern California 
metropolitan region (SCAG region), San Francisco Bay Area, and the Cleveland, OH, region. 

Data collected from four metropolitan regions confirm that bicycle travel is increasing both as an 
active transportation mode and as a means of travel demand management. However, bicycle 
travel supply and demand variables collected by local agencies vary considerably in quality and 
robustness. While leading edge travel demand modeling agencies are beginning to integrate 
bicycle use data into travel forecasting, simple trend extrapolation remains the primary approach. 
Significant data gaps limit the ability to fully incorporate bicycling choice and use in activity-
based models of travel demand. 

Examples from the four metropolitan study areas were presented, focusing on overall bicycle use 
and limited evidence for potential modal shift in connection with bike on transit service options 
and bikesharing plans. The importance of factors such as weather in bicycle use decisions is 
strongly evident through the available data. Recommended data needed to advance the state of 
the art and the practice were identified and presented.  
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CHAPTER 6. AERIS CASE STUDY I: SOCIAL NETWORKS AND GREEN 
BEHAVIORS 

ROLE OF ATTITUDES IN BEHAVIORAL DECISIONMAKING 

The objective of this chapter is to present a social network-based attitude diffusion system model 
in the context of activity and travel choice behavior, especially in response to a new green 
transportation alternative. The model framework could be extended and modified to include 
attitudes toward other choice dimensions (e.g., mode choice, departure time choice, etc.). 

Most choice behavior dimensions are explained by the individual decisionmaking entity’s socio-
economic characteristics and attributes of the different alternatives to choose from. However, 
these are not the only variables that explain heterogeneity in the mode preferences. Following  
the pioneering work of Koppelman and Pas and McFadden, it has become well accepted that 
attitudes and perceptions play an important role in the decisionmaking process.(126,127) Attitudes 
and perceptions cannot be directly observed from the data and are as a result considered  
latent variables. 

The structural equation models of attitudinal variables are integrated into choice models in order 
to make use of simultaneous estimation of choice and attitudinal variables.(128) These integrated 
models, which have been in use since the early 1980s in travel behavior studies, were later 
generalized into so-called hybrid choice models and popularized by Ben-Akiva et al.(129,130) They 
provide a general framework where attitudinal variables are considered as latent variables. 

In transport research, a large literature base exists on the use of attitudinal latent variables to 
explain traveler behavior and choices. Golob presents a good overview of these studies.(128) 
Scheiner and Holz-Rau analyze the interrelation between socioeconomic characteristics, 
lifestyle, residential choice, and travel behavior of individuals.(131) They confirmed that lifestyle 
preferences play a key role in the residential choice of individuals, which in turn has an 
important impact on the travel mode choice. Similarly, Van Acker et al. studied how residential 
and travel attitudes affect residential location and travel behavior decisions using data from an 
Internet survey in Flanders, Belgium.(132) The study provides confirmatory evidence that car 
ownership is significantly affected by residential attitudes. Van Acker et al. extended the model 
by including interrelations between residential and travel mode choices for leisure trips.(133) The 
study points out that the strength of interrelation depends on the mode as well as the activity 
performed. It also identifies different lifestyle characteristics that result in different travel mode 
decisions. By comparing the models with and without lifestyle characteristics, the authors 
conclude that inclusion of these subjective variables results in improvement in terms of the 
explained variance in mode choice. 

In integrated choice and latent variable models, the attitudinal variables are included as 
explanatory variables of the choice. Johansson et al. analyzed the effect of the latent variables of 
environmental preferences, safety, comfort, convenience, and flexibility on mode choice  
using a sample of Swedish commuters.(134) They provide insights for policymakers so as to 
improve the transport systems through the use of the attitudinal variables. Espino et al. studied 
the mode choice behavior for suburban trips by including the latent variable of comfort.(135) 
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Abou-Zeid et al. explained the variability in individuals’ willingness to pay using individuals’ 
attitudes toward travel through a latent variable model.(136) They introduce a car-loving attitude 
and show that individuals who dislike public transport are more sensitive to the time and cost 
changes of public transport compared to others. 

While conceptually appealing and empirically significant, incorporating attitudes in forecasting 
model systems has always been somewhat problematic when the target population of interest is 
large. Unlike measurable attributes, the latency of attitudes has made forecasting their future 
values especially challenging. For this reason, when applying travel choice models to predict 
demand in practice, it is generally assumed that the attitudes are stable and that travelers are 
aware of the attributes of the available alternatives. However, when new services are introduced 
or some attributes of the transport system are changed, not all travelers will be aware of the 
change to adjust their attitudes accordingly. Rather, they will learn about those changes through 
various information sources, including social interaction. In these cases, consideration of the new 
opinion generation process and the role of information diffusion in social interaction becomes an 
important element in the attitude updating process that determines the eventual demand for the 
service. Furthermore, several new policy interventions aimed at changing the habitual behaviors 
of tripmakers and overcoming the associated inertia associated with established routines, 
especially towards more sustainable (greener) alternatives, require targeting the underlying 
attitudes. Hence, it is important to understand the mechanisms by which attitudes are formed, 
updated, and transformed, in addition to their impact on individual decisionmaking processes. 

FRAMEWORK FOR EVALUATION 

Attitudes can influence individual choices on many different levels, as discussed in the brief 
literature review in the previous section. However, most studies using latent variables in the 
context of travel behavior include lifestyle attitude variables toward or against more 
environmentally friendly modes in mode choice models or in longer-term decision models 
toward the ownership of certain transportation tools. 

This section discusses the sequence of models used to disseminate information to form and 
influence attitudes as well as the influence of attitudes on choice models and how these choice 
models interrelate with other choice models. 

The integration of these different models has several parts. First, information about greener or 
more environmentally friendly modes/travel opportunities is available and is disseminated across 
individuals. Second, based on this new information, a certain portion of the public can be 
influenced. As a result, people change their attitudes. These first and second steps heavily 
depend on interactions between individuals and their environment. Third, the attitude updates are 
used together with socio demographic variables and attributes that describe the different options 
in a choice set for a given decision. The decisions that are primarily and directly affected are  
the short- and medium-term traveler decisions shown in figure 27. This includes direct impacts 
of attitudes on mode choice and car ownership through the utility expressions for each  
choice alternative. 

However, in the short, medium, and long term, attitudes can also further indirectly affect user 
decisions, such as activity pattern changes and accessibility as well as departure time choices and 
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location choices. They may also affect even longer-term choices of home, workplace, and school 
location (not illustrated in the figure).  

 
Figure 27. Illustration. Attitudes and information dissemination impact modeling 

framework. 

Though some studies have shown the potential of growing green transport market share and 
highlighted the importance of information diffusion in market adoption, there is lack of 
knowledge on how and to what extent that information will affect the mode choice behavior of 
users. When some acquaintances of an individual become commute greener fans, will he/she 
modify his/her own attitude or not? When a friend selects public transit or a new mobility 
alternative as her/his transportation mode, will that individual consider this new alternative, and 
will his/her mode choice change accordingly? 

In this case study, the word-of-mouth mechanism was mainly used, which is modeled for large 
populations where people meet in small groups (e.g., pairs) with two agents to discuss their 
attitudes on a particular product, service, or topic. Mathematical models are developed to capture 
this information diffusion process. 

AGENT-BASED MODELS AND MACROSIMULATION/MICROSIMULATION 

In transportation models, it is most common to represent individual-level decisions with given 
attributes. These attributes determine individuals’ behaviors (e.g., choices or decisions given the 
characteristics of alternatives), often modeled within the random utility framework. These 
models are intended to provide a statistical representation of the target population. The individual 
behavior affected by environment attributes is calibrated at the micro level using actual data, and 
validation of aggregate properties in distribution against actual data. The interaction with the 
environment affects the decisions through many different attributes of the environment and the 
individual itself. Most common in transportation models is the interaction of individuals with the 
transportation system itself and the representation of the system through level of service 
attributes, which are affected by the choices of each individual and in turn affect the choices the 
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individual makes. This iterative loop of interaction between the demand and supply models is 
commonly used for forecasting purposes and the evaluation of projects. 

For the dissemination of information and attitudes, these kinds of models are less common  
and useful, as the processes rely heavily on interaction of individuals with each other. Such an 
interaction model is a typical feature of agent-based models, which can be described as a 
computational method that relies on models composed of agents that interact within an 
environment and with each other. Agent-based models rely on behavior rules in the form of 
computational models explicit about inter-agent communication and interaction, explicitly 
capturing processes such as learning. However, these models do not rely on statistical theories 
and have no such basis for prediction. 

In the case of information and attitude update processes, such agent-based models are ideal, as 
they allow including such processes through information and interaction with other agents. 

Two different kind of models, microsimulation/macrosimulation and agent-based models, can be 
integrated with each other by allowing the output of the agent-based models, which in this case 
determine the updated attitudes to be used as an input variable in utility-based choice models, as 
illustrated in figure 28. 

 

Figure 28. Illusttration. Social network attitude diffusion influence process integrated into 
utility-based choice models. 

In the following sections, the development of an agent-based model to capture attitudes is 
described and then applied in a hypothetical scenario. 

MODEL DEVELOPMENT 

The agent-based model developed and described in this chapter assumes a neighborhood- 
based environment, within which agents interact with each other. Such an environment can be 
thought of as being important in influencing longer-term decisions such as mobility tool 
ownership. The interrelation between socioeconomic characteristics, lifestyle, residential choice, 
and travel behavior of the individuals has been studied by Scheiner and Holz-Rau and Van Acker 
et al. (See references 130–133.) Both find that residential location, lifestyles, attitudes, and travel 
behavior are strongly interrelated. Such an environment is created by letting agents communicate 
with their neighbors and influence each other (lattice social network), which then results in 
dynamically updating their attitudes. In such a case, the probability of communicating with a 
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neighbor and adjusting attitudes is based on a word-of-mouth mechanism, described in the 
following section. The attitude adjustment calculation for each interacting pair of individuals is 
described in the section, “Opinion Change Model.” 

Other environments to disseminate different kinds of information could be built (e.g., influences 
on short-term behavior could be represented within a scale-free or small world network where 
communication takes place trough social networking tools). 

Communication Model 

A basic idea of the word-of-mouth mechanism is that information is diffused from an individual 
to a friend or to somebody in that individual’s social network. For this reason, it is unusual that 
people communicate with a stranger. Thus, this mechanism implies that a threshold of selectivity 
exists. In reality, rich people usually have the resources to convince others regarding the merit of 
certain services or products. Thus, this research considers one aspect of social status, referred to 
as social class, as a factor in opinion formation and propagation. Following the suggestions of 
many sociologists, five classes were adopted: elite, upper middle, lower middle, working, and 
poor. Besides, the personality or charisma of people also attracts others to believe them and 
accept their choices in some ways. Therefore, social type, which is another social parameter, is 
involved. Social type characterizes an individual as an opinion leader or an opinion follower by 
an individual’s personality. 

For this model, it was hypothesized that the role of the word-of-mouth mechanism changes by 
social type first and by social class second. When an information source is questionable, an 
individual may be less likely to revise his/her opinion during the interaction with other 
individuals in the future. The confidence of that individual in his/her opinion will have the same 
influence on opinions regardless of social class and social type. Since personalities are important 
in the adoption of an innovation in a community, social type has the most impact on the role 
mechanism.(137) 

This model explains similarity concept by incorporating dissimilarity parameter and threshold 
parameter. The word-of-mouth dissimilarity between two communicating individuals is 
represented in figure 29, which is used in measuring the difference of two individuals who are 
trying to communicate. 

 
Figure 29. Equation. Dissimilarity function. 

Where: 

i = The target individual. 
j = The interacting individual. 

 = Model parameters. 
𝑆𝑆𝑆𝑆𝑖𝑖 = Social class of individual i. 
SCj = Social class of individual j. 
STi = social type of individual i. 
STj = social type of individual j. 

Dissimilarityij= β1|SCi – SCj| + β2|STi – STj| + β3|Ai – Aj| 

β1, β2, and β3 
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Ai = Attitude strength of individual i. 
Aj = Attitude strength of individual j. 

The more similar two individuals are, the higher the likelihood of tending to interact or revise 
opinions. In this model, the researcher considers SC = {1,2,3,4,5}, ST = {1,2}, 1 = 0.2 for the 
difference of social class, 2 = 0.5 for the difference of social type, and 3 = 0.3 for the 
difference of opinion. These parameters are not calibrated but are used for illustration purposes. 
Data collection needs are described in the section, “Recommended next steps and research.” 

The interaction threshold is speciafied in figure 30. The social type-related component follows 
the distribution of the diffusion of innovation theory (see figure 31) for opinion followers and 
increase the tolerance for opinion leaders. The social class dependent component implies the 
lower the social class of an individual, the larger the threshold parameter. Thus, an individual is 
more likely to revise his/her opinion according to the opinion of those who are more rich and 
powerful. When the target individual encounters other individuals and more interaction takes 
place, the interaction efficiency increases so that the target individual has more confidence in 
his/her opinion, resulting in the decrease of the threshold to interact with others. 

𝑇𝑇𝑇𝑇𝑖𝑖 =  𝑇𝑇𝑇𝑇𝑖𝑖 ∙ 𝑆𝑆𝑇𝑇𝑖𝑖(𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑖𝑖)(1− 𝐸𝐸𝑖𝑖) 

Figure 30. Equation. Interaction threshold function. 

Where: 

THi = Interaction threshold for individual i. 
TTi = Type-dependent tolerance of individual i. 
C = Largest social class index plus 1. 
Ei = Communication confidence of invididual i. 

 
Figure 31. Illustration. Rogers’ bell curve of the innovation adoption life-cycle distribution.  
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The communication confidence parameter can be expressed using the following equation: 

 
Figure 32. Equation. Communication confidence parameter. 

Where:  

k = Current simulation step. 
J = Number of encounters in each simulation step. 
𝐿𝐿 = Number of last simulation step. 
t, T = Total simulation step. 
Nik = Number of interactions at simulation step k. 
Mik = the type-dependent memory coefficient of individual i at simulation step k. 

The memory coefficient captures psychological phenomena such as the availability heuristic, 
whereby individuals tend to recall recent events.(138) If it is assumed that one simulation step is  
1 day, memory decays in a matter of days unless individuals purposely review what they had 
learned. According to it, the type-dependent memory coefficient is specified as follows: 

 
Figure 33. Equation. Type-dependent memory coefficient. 

Where: 

S = Relative strength of memory. 
t = Total simulation step. 

In figure 34, a typical exponential forgetting curve shows how information is lost over time.(139) 

 
Figure 34. Graph. Forgetting curve.  
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When the dissimilarity is smaller than the threshold of the target individual, two individuals 
communicate, and the target invididual considers updating its opinion value. This situation can 
be discribed by the inequality in figure 35. 

 
Figure 35. Equation. Dissimilarity inequality. 

Table 16 presents the variables and their coresponding values used in the simulation experiment 
presented in the following sections. 

Table 16. Variables and values used in the simulation experiment. 
Variable Value 

TTi Inventor = 0.9; early adopters = 0.7, early 
majority = 0.5, late majority = 0.3, and 
Laggards = 0.1 

C 6 
SCi Social class 
S Opinion seeks = 0.5; opinion leaders = 1 

ST 1, 2 
 
For each individual, THi and STi are calculated using the value in table 16. 

Opinion Change Model 

When an individual decides to revise an opinion value, the opinion change model is triggered. 
This model utilizes an opinion-following mechanism, shown in figure 36, which is adapted by 
Kozuki from the car-following mechanism.(77,140) 

 

Figure 36. Equation. Opinion change function. 

Where:  

 (t + T) = Change in opinion value for the target individual at time t + T. 
Aj and Ai = Current opinion values of the target individual and interacting individual, 
respectively. 

(ST, SC) = Impedance function that depends on social type and social class.  

The new opinion value of the target individual is displayed in figure 37. 

 
Figure 37. Equation. Opinion value function. 

Where Ai (t + T) is the new opinion value and Ai(t) is the previous value.  

The impedance function is composed of four mechanisms with binary variable: class-type 
similarity, opinion leader, opinion follower and status quo. It is represented by figure 38. 

|Dissimilarityij|< THi, i ≠ j 

Ai̇ (t + T) = λ(ST, SC)(Aj – Ai) 

Ai̇  

λ 

Ai(t + T) = Ai(t) + Ai̇ (t + T) 
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Figure 38. Equation. Impendance function. 

Where: 

 = Impedance. 
 = Opinion leader status-quo bias indicator. 
 = Opinion leader indicator for individual i. 
 = Class-type similarity for individual i. 
 = A User-defined constant. 

𝛶𝛶= A user-specified constant. 

Class-Type Similarity Mechanism 

For the class-type simiilarity mechanism to be triggered, two interacting individuals must be 
similar either in social class or social type. This is described as a binary variable in figure 39. 

 
Figure 39. Equation. Class type similarity indicator. 

If the individuals are similar in social class or social type, they simply average their opinions 
since they carry the same social resources. 

Opinion Leader Mechanism 

For an opinion leader, the opinion exchanged between the leader and the other individual does 
not depend on the other individual’s social class. If the interacting individual is another opinion 
leader in a different class, the individual becomes aware of social class differences only. The 
following function displays these behaviors: 

 
Figure 40. Equation. Opinion leader mechanism. 

Where: 

. 

 = A user-specified constant. 

Where 𝜏𝜏𝑖𝑖 specifies if the opinion leader mechanism is triggered by a binary value and ST is a 
binary value equal to 1 if an individual is an opinon leader, and 0 if the individual is an opinion 
follower. In this model example, the researcher sets  = 2 for the opinion follower and  = 0.8 
for the opinion leader and Z = 2 when the interacting opinion leader is in the lower social class. 

λ(ST,SC)=(1 – δi) �0.5ηi + τi �
1

ρSCi
�
αZ

+ ωi �
ϗ

Υ|SCi – SCj|
�
β

� 

λ 
δi 
τi 
ηi 
ρ 

ηi = � 1 if SCi – SCj ≤ 0 or STi = STj 
0 otherwise 

� 
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αZ

, Ci ≥ 1 
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 0  otherwise
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Opinion Follower Mechanism 

For an opinion follower, the opinion exchanged between the follower and the other individual 
does not depend on the other individual’s social class. The following function displays  
these behaviors: 

 
Figure 41. Equation. Opinion follower mechanism. 

Where  specifies if the opinion follower mechanism is triggered by a binary value. In this 
model example, the researcher sets ϗ = 2 if the interacting individual is an opinion leader and the 
target individual is an opinion follower and  = 2 when the interacting individual is in the lower 
social class.  

Status Quo Mechanism 

Figure 42 shows the status quo mechanism as a binary variable. This states that opinion leaders 
do not update their opinion based on opinion followers. 

 
Figure 42. Equation. Status quo mechanism. 

Attitude Update Model 

For a new opinion, five attitudes, strongly disagree, disagree, no opinion, agree and strongly 
agree are considered. Attitude update thresholds are are follows: 

• Strongly disagree: [-2,-1.5). 

• Disagree: [-1.5, -0.5). 

• No opinion: [-0.5, 0.5). 

• Agree: [0.5, 1.5). 

• Strongly agree: [1.5, 2]. 

SIMULATION OF ATTITUDE DIFFUSION THROUGH SOCIAL NETWORK 

The simulation experiment is based on a Netlogo modeling platform.(141) Netlogo was developed 
by the Northwestern University Center for Connected Learning and Computer-Based Modeling. 
The simulation experiment illustrates the information diffusion process through a social network 
in different situations. The experiment is proposed to provide a reference for the diffusion of 
information regarding green travel modes in a lattice neighorhood network and the possible 
implications of this information diffusion process on attitudes. 

ωi �
ϗ

Υ|SCi – SCj|
�
β

 

ωi 

β 

δi = � 1  if STi = 1 and STj = 0 
 0 otherwise

� 
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Design of the Experiment and Network Initialization 

Based on the social class of the household, a lattice neighborhood network with four blocks is 
created in the Netlogo platform. Each block represents a neighborhood in the real world. Each 
agent in the experiment represents a family. The total number of agents in the whole network is 
22,500, and each neighborhood has 5,625 families/agents. Each color represents the attitude of 
each agent towards green transportation modes. Violet is strongly agree, blue is agree, green is 
no opinion, yellow is disagree, and red is strongly disagree.  

According to the distribution of the five social classes in each neighborhood (see figure 43 
through figure 46), their correlation with attitude distribution (see table 17) and the distribution 
of social type (see table 18), the network is initialized where neighborhood 1 is a hypothetical 
high-income homogenous neighborhood. Neighborhood 2 is composed of middle upper income 
agents that are heterogeneous. Many low-income agents live in neighborhood 3, which 
represents a rather homogenous neighborhood. Neighborhood 4 is composed of middle lower 
income agents, which is heterogeneous.  

 
Figure 43. Graph. Social class distribution in neighborhood 1. 

 
Figure 44. Graph. Social class distribution in neighborhood 2. 

 
Figure 45. Graph. Social class distribution in neighborhood 3. 
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Figure 46. Graph. Social class distribution in neighborhood 4. 

Table 17. Neigborhood description with social class (household income) related to attitude. 

Neighborhood 
Social Class 

Value 
Social Class 

Number (agents) 
Distribution 

(percent) 

1 

1 113 2 
2 169 3 
3 281 5 
4 1,125 20 
5 3,938 70 

2 

1 281 5 
2 1,688 30 
3 2,250 40 
4 1,125 20 
5 281 5 

3 

1 3,938 70 
2 1,125 20 
3 281 5 
4 169 3 
5 113 2 

4 

1 281 5 
2 1,125 20 
3 2,250 40 
4 1,688 30 
5 281 5 

Note: Social class: 1= Poor; 2 = Working class; 3 = Lower middle class; 4 = Upper middle 
class; and 5 = Elite. 
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Table 18. Social type distribution in all neighborhoods. 

Social Type Follower Type 
Distribution 

(percent) 
Opinion leader Leader 50 
Opinion 
follower 

Innovator 1. 25 
Early adopters 6.75 
Early majority 17 
Late majority 17 
Laggards 8 

 
For the neighborhood representation of the experimental scenarios in figure 47 and figure 48, 
there are two main assumptions in this model as follows: 

• All agents in a given neighorhood only communicate with others in that  
same community. 

• Individuals in the lattice network are able to communicate with their eight immediate 
neighbors and do not interact with other agents in the same neighborhood. 

 
Figure 47. Illustration. Agent locations and social classes for a network before simulation 

stabilization. 
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Figure 48. Illustration. Agent locations and social classes for a network after simulation 

stabilization. 

Basic Scenario 

After the initialization of the lattice neighborhood network, the model is built on the Netlogo 
platform, where figure 49 shows the model interface. After the initialization, the simulation is 
run in Netlogo untill a stable state is reached, whereby the attitude shares among the five classes 
do not change anymore.  

 
Figure 49. Screenshot. Netlogo model interface. 

The attitude share distribution stabilizes with time, and its steady state is shown in figure 50 
through figure 53. Each diagram describes the relationship between the number of agents and 
simulation time. The different colors represent the different attitudes. The statistical distribution 
of attitudes in each neighborhood after the simulation (base scenario) is shown in figure 54. 
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Figure 50. Graph. Number of agents with different attitudes in neighborhood 1. 

 
Figure 51. Graph. Number of agents with different attitudes in neighborhood 2. 

 
Figure 52. Graph. Number of agents with different attitudes in neighborhood 3. 

 
Figure 53. Graph. Number of agents with different attitudes in neighborhood 4. 

79 



 

 
Note: N1 = Neighborhood 1, N2 = Neighborhood 2, N3 = Neighborhood 3, and N4 = Neighborhood 4. 

Figure 54. Graph. Attitude distribution in neighborhoods 1–4 of base scenario. 

For comparison of the neighborhoods, the following performance measures are used: 

• Time (ticks) for opinion value to converge. 

• Number of interactions until convergence.  

From figure 50 through figure 53, it is evident that neighborhood 1 needs the most time to 
converge, and neighborhood 3 can reach a stable status the fastest among the neighborhoods. 
Additionally, neighborhood 3 had the largest number of interactions. 

Simulation Experiments and Results 

With new information from outside the neighborhood, the attitudes toward more sustainable 
modes of transportation can be influenced. Influencing the attitudes of travellers from outside 
can be accomplished through a variety of ways (e.g., through targeted advertisements to 
influence attitudes, operational targeting via positive feedback for sustainable traveler choices, or 
by incentivizing the use of sustainable transport). By observing the people around them and by 
sharing their experience with their neighbors, the attitude diffusion process given an initial 
change can then be initiated. The model presented in this chapter is designed to answer the 
question: If we want to sustain the change in attitudes, who needs to be influenced? Additionally, 
how many (what fraction of) agents will change their attitude? In order to study how agents are 
affected by the diffusion of information under outside interventions, the following two scenarios 
are designed: random targeting of agents and targetting network opinion leaders. For each 
experiment, the stable solution described in the previous sections uses the initial network. 
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Random Targeting of Agents 

In this scenario shown in figure 55, 30 percent of agents with the attitude “strongly disagree” 
were selected randomly and induced to change their attitude from “strongly disagree” to “agree.” 
This scenario simulates a non-targeted external influence shown in figure 56.  

 
Figure 55. Illustration. Simulation results for scenario 1: random targeting simulation 

results. 

 
Note: N1 = Neighborhood 1, N2 = Neighborhood 2, N3 = Neighborhood 3,  
and N4 = Neighborhood 4. 

Figure 56. Graph. Simulation results for scenario 1: random targeting percentage change 
of attitudes. 

In figure 55, outside influence effects neigborhood 3 (lower left corner) and neigborhood 1 
(upper right corner) the most. Whereas in neighborhood 3, where already a majority of the agents 
had a positive attitude, the change cannot be sustained. The change in neighborhood 1 can be 
nearly sustained, as the group with “strongly disagree” attitude nearly maintain the outside 
change. In general, the more homogenous neighborhoods where a higher intensity of interaction 
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is simulated are more affected by an outside intervention, whereas the heterogenous 
neighborhoods tend to retain the same attitude share as in the base scenario. 

Figure 57 shows the compliance of the neighborhood under outside influence. The number of 
people rejecting the new attitude decreases in neighborhoods 1, 2, and 4. The change in 
neighborhood 1 is the most visible. The number of people accepting new information decreases 
in neighborhoods 2, 3 and 4 and increases in neighborhood 1. 

 
 

Figure 57. Graph. Percentage change of attitudes aggregated in positive and negative 
attitude bins. 

Targetting Network Opinion Leaders 

In this second scenario, targeted influence from the outside was tested, with 30 percent of the 
opinion leaders selected randomly and induced to change their attitude from “strongly disagree” 
to “agree.” Figure 58 shows similar results as in scenario 1. However, as expected, influencing 
opinion leaders had a stronger impact overall. The outside influence affected the homogenous 
neighborhoods the most. Whereas in neighborhood 3, where already a majority of the agents had 
a positive attitude, the change could be sustained. The change in neighborhood 1 was sustained 
and expanded, as the group with “strongly disagree” attitude grew in excess of outside influence. 
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Figure 58. Graph. Percentage change of attitudes in the different neighorhoods under 

scenario 2: targeting opinion leaders. 

Figure 59 shows that the number of people who rejected new information under the outside 
influence decreased in neighborhoods 1, 2, and 4. The change in neighborhood 1 is the most 
striking. The number of people accepting new information decreased in neighborhoods 2 and 3 
and increased in neighborhoods 1 and 4. Comparing these results with the results from  
scenario 1, the influence of outside factors is stronger under scenario 2. 

 
Figure 59. Graph. Percentage change of attitude aggregated in positive and negative 

attitude bins. 

Limitations 

This case study is primarily intended as an exploratory piece, providing an outlook for future 
research rather than a modeling tool ready for immediate implementation. Nevertheless, 
information and attitudes in individual decision processes are very important and are increasingly 
being incorporated or considered into choice models. Especially for demand management 
purposes, it is important to understand the information dissemination and attitude evolution 
processes. Better understanding and modeling of these processes can enable agencies and 
policymakers to exert greater control over demand and how demand could be influenced. This 
does not only have to be in one direction towards more sustainable attitudes but can also be used 
to understand strong positive attitudes towards less sustainable behavior and how such attitudes 
could be reversed or mitigated. 
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The most significant limitation in this case study is that the models are not calibrated based on 
actual observations but only serve illustrative purposes to show the different processes involved 
in an attitude formation model and how these processes can be formulated in an agent-based 
modeling framework. This work underscores the large data gaps and needs in the realm of user 
attitudes and associated dynamic mechanisms as well as the potential value in terms of policy 
effectiveness of investing to deploy data gathering and user behavior observatories. 

RECOMMENDED NEXT STEPS AND RESEARCH 

Although attitudinal questions have been integrated into recent travel surveys, these attitudes are 
assumed to be static and introduced in the models as being constant.(134,135) The case study in this 
chapter built a model to understand the processes behind these attitudes and to the research 
team’s knowledge. There is no data available to calibrate the developed model. Instead of relying 
on existing data, the model is based on concepts and processes known from literature, where 
similar models have been developed. As in all areas, the responses of travelers to information, 
messages, guidance, and controls are essential to the overall effectiveness of management 
strategies. Understanding the process of information dissemination and attitude formation can be 
an important contribution in understanding and evaluating demand management strategies, 
which involve information. But as attitudes and their formation dissemination may take place 
over a longer period, a travel behavior and attitude tracking survey would be needed to 
dynamically collect travel behavior and attitudinal data. 

A next step would be to design an experimental survey where people would be tracked over a 
longer period of time and be exposed to stimuli conditioning. The survey would track how the 
participants learn their attitudes. Such stimuli conditioning could be through advertisements 
toward a particular attitude or with incentive stimuli. In a second step, participants could discuss 
their attitudes with the other participants around them and learn from each other. 

The methodology applied in this case study provides the necessary framework and structure to 
capture the processes of how people learn their attitudes and could be validated and calibrated 
with the observation of such an experimental study and reformulated if necessary. 
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CHAPTER 7. AERIS CASE STUDY II: INFLO AND SPEED COMPLIANCE 

PROGRAM INTERVENTION: SPEED HARMONIZATION 

The U.S. Department of Transportation (USDOT) DMA program has identified 10 high-priority 
mobility applications to improve the individual mobility, safety, and environmental impacts 
through connecting vehicles, infrastructure, and travelers.(142) Figure 60 shows these USDOT 
DMA bundles. INFLO is part of these mobility applications, which includes queue warning, 
cooperative adaptive cruise control, and speed harmonization.(143) Among these applications, this 
study focuses on speed harmonization, which is an ATM strategy that adjusts the speed limit 
based on traffic, weather, and road surface condition to improve mobility, safety, and negative 
environmental impacts.(140) 

 
Figure 60. Illustration. USDOT DMA bundles.(144) 

USDOT’s AERIS program also identifies speed harmonization as an effective application to 
control negative environmental impacts.(144) The AERIS program examines ways to reduce 
environmental impacts resulting from transportation-related emissions and fuel consumption, and 
as such, AERIS projects leverage other USDOT research areas for environmental management. 
The AERIS program has developed six transformative concepts, bundling applications to achieve 
additional benefits beyond what each can achieve alone. Connected vehicle technology is a 
central component of the AERIS program, so information and how it is communicated to 
travelers and their vehicles is of interest. Figure 61 shows the USDOT AERIS bundles, where 
speed harmonization is characterized as an eco-lanes application. 
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Figure 61. Illustration. USDOT AERIS application bundles.(144) 

Speed harmonization was first introduced in Germany and the Netherlands in the 1970s; 
however, it was not widely implemented until the 2000s.(145) The literature has adopted both 
empirical and simulation approaches to analyze the effectiveness of speed harmonization 
systems. Empirical-based approaches focus on evaluating the effectiveness of the existing 
systems. (See references 143–150.) These studies mainly compare certain performance measures 
(e.g., flow rate, travel time, crash rate, etc.), based on the empirical data in a before  
and after study to investigate the effectiveness of speed harmonization systems. Unlike 
empirical-based approaches, simulation-based approaches mostly investigate the algorithms  
and methods with the objective of improving the performance of the speed harmonization 
systems. (See references 151–157.) These studies mainly focus on improving the speed limit 
selection algorithms. 

Current practice of speed harmonization systems can benefit from connected vehicles 
technology. Connected vehicles technology will provide the means to detect and collect the 
individual vehicles’ trajectories. These trajectories can be used in traffic control algorithms to 
improve the performance of Intelligent Transportation Systems (ITS), enhance safety, control 
congestion, and reduce emissions. However, further behavioral based studies are required to 
incorporate the information provided by connected vehicles into speed harmonization 
systems.(140) The main objective of this study was to investigate the impacts of early shockwave 
detection based on the information from the connected vehicles on congestion and emission 
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control using speed harmonization as the control strategy. The performance of the speed 
harmonization system under different drivers’ compliance levels was also investigated to 
understand what level of behavioral compliance was needed to achieve intervention targets.  
The speed harmonization system implemented in this study was first introduced by Talebpour  
et al.(140) This system adopts the wavelet transform method to generate a reliable shockwave 
detection algorithm.(158) The speed limit is selected based on a predefined decision tree.(159)  
The microsimulation model of Hamdar et al. was used to implement the speed harmonization 
system.(160) 

The following section presents the effects of the speed harmonization systems on travel behavior. 
Formulation of the microscopic model, the logic behind the speed harmonization and ramp 
metering algorithms, the simulation framework, and the corresponding heterogeneity 
considerations are discussed next. The study sections are described followed by experimental 
results on each section.  

FRAMEWORK FOR EVALUATION 

Connected vehicle technology is intended to help drivers avoid making bad driving decisions en 
route. Speed harmonization, like ramp metering and VMSs, requires drivers to comply with the 
advised policy in order for it to be effective. As such, the key decision for drivers is whether to 
comply with this information or not (see figure 62). The level of compliance with advised (and in 
some cases required) information directly influences the acceleration and deceleration of 
vehicles on the network. These vehicles are then assigned to the network using multi-criterion 
DTA, which indirectly produces new network travel times and travel costs. Over time, these 
travel costs influence travelers’ mode choice utility and perceived accessibility (e.g., travel time 
to their preferred destinations). There is little existing research on how speed harmonization 
might influence travelers’ accessibility and mobility choices over time. 

 
Figure 62. Illustration. Framework for evaluation of speed harmonization and related  

en-route interventions. 
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DATA AVAILABLE AND USED IN CASE STUDY 

In this study, two highway segments were selected for the simulation case studies: a hypothetical 
segment and a real-world segment. The hypothetical segment is a two-lane segment with a lane 
drop. Figure 63 illustrates the geometric characteristics of this hypothetical segment. The 
segment is 6 mi long, and the lane drop is located 3.5 mi downstream of the start location. The 
inflow rate is set to be 1,500 vehicles/h. The simple geometric characteristics of this segment 
provide a controlled environment to fulfill the objectives of this study. 

 
Figure 63. Illustration. Geometric characteristics of the hypothetical two-lane highway. 

A four-lane highway was also selected for the simulation case study. The segment is located on 
the eastbound direction of I-290 near Chicago, IL. This 3.5-mi-long segment has four on-ramps 
and three off-ramps, each with different characteristics and different merging length. Figure 64 
and figure 65 show the geographic and geometric characteristics of this segment, respectively. 
The loop detector data (speed, flow, and occupancy) is only available for the main section. 
Therefore, the output of the DYNASMART mesoscopic model for the morning peak period was 
used to calculate the flow pattern in the segment. The loop detector data were then used to adjust 
these flows to their actual values on an average day. The individual vehicles’ paths were 
determined by utilizing the DYNASMART output. The information on these paths (i.e., start 
section, end section, and departure time) was then combined to calculate the ramps and main 
section entry flows. 

 
©Google Maps® 2012 

Figure 64. Illustration. Geographic characterization of the selected segment in  
Chicago, IL.(161) 

3.5 M iles

 
©Google 2012 
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Figure 65. Illustration. Geometric characterization of the selected segment in Chicago, IL. 

MODEL DEVELOPMENT AND CALIBRATION 

In this study, the microsimulation model of Hamdar et al. was used in conjunction with the speed 
harmonization system introduced by Talebpour et al. to investigate the effects of speed 
harmonization on traffic breakdown and carbon dioxide emission.(160,140) In the following 
section, the formulation of the microscopic model is presented. The speed harmonization system 
and the logic behind the shockwave detection and speed limit selection algorithms are discussed, 
followed by a presentation of the ramp metering algorithm and the model calibration results. 

Microscopic Model Formulation 

Acceleration modeling and lane change modeling are core elements of microsimulation traffic 
models. Acceleration models are intended to capture the operational decisionmaking process, 
while lane changing models aim to capture the tactical driving decisionmaking process. This 
study builds on the simulation model presented by Hamdar et al., which adopts a duration-based 
framework at the tactical level and a utility-based framework at the operational level.(160) 
Additional details on the model formulation can be found in Hamdar and Hamdar and 
Mahmassani.(162,163) 

Duration Framework 

In the duration framework, the hazard-based duration models were used to capture the tactical 
decisionmaking process. The driving process was divided into different episodes characterized 
by a termination probability (given that the episode has not ended before) and an episode 
duration (the time elapsed before the driver enters another episode). The episodes could be 
divided into car-following episodes and free-flow episodes based on the corresponding inter-
vehicle follower-leader interactions. 

A free-flow episode ends when either the distance between the vehicle and its leader decreases  
to the point that the new episode can be considered as a car-following episode or the vehicle 
changes lane (the vehicle can enter another car-following episode or free-flow episode depending 
on the interaction between the vehicle and the leader). The car-following episode ends when 
either the vehicle changes lane (similar to the car-following episode, the outcome can be either a 
free-flow episode or a car-following episode) or the distance between the vehicle and its leader 
increases to the point that the new episode can be considered as free-flow episode. 

  

3 .5  M ile s
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The hazard at time u is defined as the conditional probability of termination of the current 
episode at small time period after u as follows: 

 
Figure 66. Equation. Hazard equation for time t. 

Where: 

i = The driver.  
q = The exit strategy of an episode. 
Tiq = The duration of the episode for driver i and exit strategy q.(163) 

0q = The base line hazard value at time u. 
xiq = The vector of explanatory variables for driver i at time u. 

q = The vector of corresponding parameters to be estimated.  

Hamdar and Mahmassani used the exponential form for the function of exogenous covariates 
shown in table 19.(163) 

  

δ 

λiq = lim
δ→0+

P �u ≤ Tiq < u + δ | Tiq < u�
δ

 = λ0q∅�xiq,βq� 

λ 

β 
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Table 19. External covariates and their definition.(163) 
Data 

Number Data Type Definition Unit 
1 Vehicle ID (VehID) ID (ascending by entry time into study section). Number 
2 Episode ID (EpID) ID (following vehicle ID ordering). Number 
3 Episode duration 

(duration) 
Duration of the car-following episode. s 

4 Episode type 
(EpType) 

q = 1, . . . , Q where Q = 4. Number 

5 Left censuring 
variable 
(LeftCens) 

LeftCens = 1 if episode is the first episode corresponding to a 
vehicle and = 0 otherwise. 

Number 

6 Vehicle type x0 
(VehType) 

1 = motorcycle, 2 = auto, and 3 = truck. Number 

7 x1 (LCL) Number of leaders changing lanes during episode. Number 
8 x2 (V) Driver’s speed. m/s 
9 x3 (DXL1) Headway between driver i and leader i – 1 (front-to-front 

bumper).  
m 

10 x4 (DVL1) Relative speed between driver i and leader i – 1. m/s 
11 x5 (DXF1) Distance headway between driver i and follower i + 1 (front-to-

front bumper).  
m 

12 x6 (DVF1) Relative speed between driver i and follower i + 1.  m/s 
13 x7 (DXL2) Distance headway between driver i and driver i – 2 (front-to-

front bumper).  
m 

14 x8 (DVL2) Relative speed between driver i and driver i – 2.  m/s 
15 x9 (DXL1R) Distance headway between driver i and the leader on the right 

lane. 
m 

16 x10 (DVL1R) Relative speed between driver i and the leader on the right lane. m/s 
17 x11 (DXF1R) Distance headway between driver i and the follower on the right 

lane.  
m 

18 x12 (DVF1R) Relative speed between driver i and the follower on the right 
lane.  

m/s 

19 x13 (DXL1L) Distance headway between driver i and the leader on the left 
lane.  

m 

20 x14 (DVL1L) Relative speed between driver i and the leader on the left lane.  m/s 
21 x15 (DXF1L) Distance headway between driver i and the follower on the left 

lane. 
m 

22 x16 (DVF1L) Relative speed between driver i and the follower on the left lane.  m/s 
23 x17 (K) Driver’s average surrounding density. Veh/km/lane 
24 x18 (KR) Driver’s average surrounding density in adjacent lane 1 (to the 

right). 
Veh/km/lane 

25 x19 (KL) Driver’s average surrounding density in adjacent lane 2 (to the 
left). 

Veh/km/lane 

1 m/s = 3.28 ft/s 
1 m = 3.28 ft 
1 km = 0.621 mi 
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Acceleration Framework 

Drivers select their acceleration based on the evaluation of the potential gains and losses. 
Hamdar et al. modeled this decisionmaking process using Kahneman and Tversky’s prospect 
theory.(160,164) Based on this theory, the decisionmaker first assigns different utilities to different 
alternatives by considering corresponding gain and losses (framing or editing phase). He/she 
then evaluates these alternatives based on the prospect index (evaluation phase). The prospect 
index is calculated similar to the expected utility using subjective decision weights instead of 
expected probability of each outcome. Based on this theory and to evaluate the acceleration 
choice, the following value function is introduced by Hamdar et al.:(160) 

 
Figure 67. Equation. Acceleration value function. 

Where:  

UPT = The acceleration value function. 
a0 = Normalization parameter. 
an = acceleration 

 > 0 and wm = Parameters to be estimated.(160)  

The drivers will gain UPT by choosing an as the acceleration unless there exists a crash 
possibility. Hamdar et al. used the crash seriousness term,  to determine the disutility 
resulting from the crash as follows: 

 
Figure 68. Equation. Crash disutility. 

Where pn,i is the probability of being involved in a rear-end collision.(160) UPT(an) is derived from 
Figure 67, and wc is a crash weighting parameter which is lower for aggressive drivers. 

Capturing the stochastic nature of the acceleration choice, Hamdar et al. obtained the logistic 
functional form as follows:(160) 

 
Figure 69. Equation. Stochastic nature of the acceleration. 

Where: 

 PT = Sensitivity of choice to the total utility. 
𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚,𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = Minimum and maximum vehicle acceleration. 
da = Integral. 
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Speed Harmonization Algorithm 

The model introduced in the previous section is used in a simulation framework that considers 
inter-driver heterogeneity. The objective is to examine the effectiveness of the speed 
harmonization system in improving traffic conditions, reducing the number and amplitude of the 
shockwaves, and delaying breakdown formation particularly under congested conditions. This 
section describes the speed limit selection algorithm for the speed harmonization system, as well 
as the approach followed in the algorithm for early determination of shockwave formation. More 
detail on these algorithms can be found in Talebpour et al.(151) 

Shockwave Detection Framework 

In this study, the wavelet transform method of Zheng et al. was used to identify the shockwave 
formation process based on individual vehicle information.(158) The authors defined an oscillation 
as a process in which an instance of acceleration behavior is followed by one of deceleration 
behavior, and used the wavelet-base energy to identify the location of the vehicle responsible for 
the start of the oscillation. 

The concept of wavelet transform developed in 1980s refers to a transformation from continuous 
time series data into scale components based on a real or complex function, (t). The general 
formulation for the continuous wavelet transform (CWT) of a general signal x(t) can be written 
as follows: 

 
Figure 70. Equation. CWT function. 

Where: 

CWT = Continuous wavelet transform function. 
 = The scale parameter. 
 = The translation parameter. 

 = The weighting function typically set to be  to normalize the energy across scales.(158)  

In this study, the Mexican hat wavelet, as defined in equation 71, is selected as the mother 
wavelet; where  = 1 and  = 0, the function is termed the mother wavelet. 

 
Figure 71. Equation. Mother wavelet function. 
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Based on the work of Zheng et al., velocity is selected as the input signal to the wavelet 
transformation. Inserting figure 71 into figure 70, the CWT used in this study can be formulated 
as follows:  

 
Figure 72. Equation. CWT function (simplified). 

The dimensionless average wavelet energy can be then calculated by averaging figure 72 across 
different scales as follows: 

 
Figure 73. Equation. Average wavelet energy function. 

Averaging makes this method a powerful tool to analyze the non-stationary signal measures such 
as traffic speed and acceleration and locating the abrupt changes in the values of these measures. 
Based on the recommendation made by Zheng et al., for each vehicle, the upper bound for  is 
set to be 6.4 s, and  is calculated for all time steps during which the vehicle is present in the 
study segment.(158) Figure 74 through figure 77 illustrate the application of the wavelet transform 
to identify the abrupt changes in speed using a vehicle trajectory from I-80 Next-Generation 
Simulation (NGSIM) data. Figure 74 shows the actual speed diagram with small and large 
fluctuations. Figure 75 shows the wavelet transform coefficient, CWT ( , ), computed for the 
entire range of  and  = 4. The figure shows that fluctuations in CWT match the fluctuations in 
actual speed while having less noise compare to the actual speed data. Figure 76 presents the 
distribution of the absolute values of CWT function, , for the entire range of  = 1 to 
64. The lighter areas in the figure correspond to the higher energy values. Finally, the 
distribution of the wavelet energy (figure 73) is presented in figure 77. The local peaks 
correspond to the abrupt speed drops in the actual time series data. 

 
Figure 74. Graph. Wavelet energy calculation—actual speed of a vehicle. 

 
Figure 75. Graph. Wavelet energy calculation—CWT of the actual speed data. 
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Figure 76. Graph. Wavelet energy calculation—absolute values of the CWT coefficient 

across scales. 

 
Figure 77. Graph. Wavelet energy calculation—average wavelet energy across scales. 

Detecting the shockwave in its early stages is an important first step in the implementation of the 
proposed speed harmonization system. In the next section, the second step of this process, speed 
limit selection, is discussed in detail. 

Speed Limit Selection 

The speed limit selection algorithm is the core component in the speed harmonization system. 
Several different approaches have been proposed, which can be categorized into reactive and 
predictive approaches. The reactive algorithms set the speed limit based on the current traffic, 
road, and weather conditions, while predictive algorithms use current traffic, road, and weather 
conditions in conjunction with a prediction module to select the speed limit. 

Figure 78 shows the decision tree for the speed limit selection, which is based on the decision 
tree introduced by Allaby et al.(159) The decision is based on the prevailing traffic condition  
(i.e., speed, flow, and density) at the shockwave detection point. Note that once a speed is 
updated on a sub-segment, it cannot be changed for 10 min to prevent rapid fluctuations in the 
speed limit. 
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1 ft = 0.305 m 

Figure 78. Flowchart. Speed harmonization decision tree. 

Ramp Metering Algorithm 

Ramp metering is a common strategy in the current practice of congestion control in highway 
systems. To provide a more realistic simulation, this study incorporates Asservissement lin´eaire 
d’entr´ee autorouti`ere’ (ALINEA) as the ramp metering algorithm.(165) ALINEA calculates the 
metering rate based on the difference between the desired and measured occupancy using the 
following equation: 

 
Figure 79. Equation. Ramp metering rate. 

Where: 

r = Ramp metering rate. 
t = Time. 
Kr = Regulatory parameter set to be 70 vehicles/h in this study based on recommendations 
presented by Chaudhary et al.(165) 
O = Desired occupancy. 
Oout = Measured occupancy. 

Simulation Framework 

The simulation framework is based on the model formulation and the speed limit selection logic 
presented earlier, with particular focus on the shockwave formation. The wavelet energy value is 
considered as an indicator of shockwave formation and computed using figure 79 for each 
vehicle at each time step of 0.1 s. For the purpose of early shockwave detection, the numerical 

 r(t)= r(t – 1) + Kr[O – Oout(t)] 
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derivation of the wavelet energy is calculated to find the peak points in the wavelet energy 
corresponding to the sudden changes in the speed as follows: 

 
Figure 80. Equation. Wavelet energy rate. 

Where: 

 h = Predefined value set to be 1 sec in this study.  
E = Energy. 

The wavelet energy is calculated and examined continuously during the simulation. Once a 
sudden change in speed is found for a vehicle, all the vehicles following that car in the range of 
0.5 mi on that lane will be checked to find other sudden changes upstream of the original 
location for the next 10 seconds. Note that these values are used here primarily for illustrative 
purposes. It can be expected that performance could be improved adaptively in a deployment 
context. If these calculations indicate a shockwave occurrence (the backward moving wave is 
found) then the appropriate speed limit to suppress this shockwave is selected based on the speed 
limit selection decision tree and the traffic conditions at the shockwave occurrence point. 

The experienced hazard is also considered as a safety indicator, and computed using figure 81 
for individual drivers at each time step. Following the aggregation procedure presented by 
Talebpour et al., this study computed the weighted average of experienced hazard to evaluate 
safety. For a segment with length L at time step u, the average hazard is calculated as follows: 

 
Figure 81. Equation. Average hazard. 

Where: 

λ�u  = The average hazard at time step u. 
 = The hazard value vehicle i and episode type q. 
 = A binary variable determining which exit strategy is active. 

Nu = The total number of vehicles at time step u.(166) 

Heterogeneity Considerations 

The behavioral parameters of drivers in microscopic simulation models are expected to be 
correlated. Kim and Mahmassani presented a methodology to capture this correlation across the 
parameters of each driver.(167) They showed that sampling from the empirical data while 
accounting for the correlation between the parameters of each sample (individual drivers) was 
the best method to capture heterogeneity in microscopic simulation models. In this study and 
based on their findings, the NGSIM data were used to generate the correlated set of parameters. 
The data were previously used by Talebpour et al. to generate the set of correlated parameters 

dE(β)
dβ

=
-E(β – 2h) + 8E(β – h) – 8E(β + h) + E(β + 2h)

12h
 

λ�u =��� λiq
u δiq

u
4

q = 1

N

i = 1

Nu� � 

λiq 
δiq 

97 



 

and were collected on April, 13, 2005, on a segment of Interstate I-80 in San Francisco, CA, 
from 4:00 to 4:15 p.m. (2,052 vehicles).(166) The correlated parameters from 35 vehicles were 
used to generate the correlated set of parameters used in the simulation exercise. Based on the 
proposed method by Kim and Mahmassani, the parameters of each generated vehicle in the 
simulation exercise corresponded to a particular vehicle in the actual data. (167)  

Table 20 shows the calibration results, and table 21 shows the correlation among the parameters 
of individual drivers. The Pearson correlation coefficients reveal strong correlation between the 
model parameters. 

Table 20. Descriptive statistics of calibrated parameters.(140) 
 Parameter Mean S.D. 

Reaction time (Rt) 0.86 0.78 
Sensitivity exponents of the generalized utility ( ) 0.47 0.41 
Velocity uncertainty variation coefficient ( ) 0.10 0.09 
Logit uncertainty parameter ( ) 5.24 2.15 
Maximum anticipation time horizon ( max) 5.35 2.47 
Asymmetry factor for negative utilities ( m) 3.56 2.17 
Weighing factor for accidents ( c) 99,315.79 21,240.08 
Correlation time of intra-driver variability ( corr) 19.50 4.20 

 
Table 21. Pearson correlation coefficients and p-values (in parentheses).(140) 

 Rt  𝜶𝜶  max m c corr 

Rt 
1.0000 -0.0845 0.0792 -0.0642 0.2155 0.1769 -0.0020 0.0439 

(0.0000) (0.6141) (0.6365) (0.7019) (0.1939) (0.2881) (0.9905) (0.7934) 

 
-0.0845 1.0000 -0.0005 0.1137 0.2545 0.2370 -0.0336 -0.1575 
(0.6141) (0.0000) (0.9977) (0.4967) (0.1231) (0.152) (0.8414) (0.3450) 

𝜶𝜶 0.0792 -0.0005 1.0000 -0.1328 -0.1606 0.2947 -0.0380 0.0459 
(0.6365) (0.9977) (0.0000) (0.4266) (0.3355) (0.0725) (0.8210) (0.7843) 

 
-0.0642 0.1137 -0.1328 1.0000 0.0327 -0.1505 -0.3580 -0.0887 
(0.7019) (0.4967) (0.4266) (0.0000) (0.8457) (0.3670) (0.0273) (0.5964) 

max 
0.2155 0.2545 -0.1606 0.0327 1.0000 0.2330 0.4509 0.1739 

(0.1939) (0.1231) (0.3355) (0.8457) (0.0000) (0.1592) (0.0045) (0.2963) 

m 
0.1769 0.2370 0.2947 -0.1505 0.2330 1.0000 0.0969 0.2712 

(0.2881) (0.1520) (0.0725) (0.3670) (0.1592) (0.0000) (0.5626) (0.0995) 

c 
-0.0020 -0.0336 -0.0380 -0.3580 0.4509 0.0969 1.0000 0.1305 
(0.9905) (0.8414) (0.8210) (0.0273) (0.0045) (0.5626) (0.0000) (0.4349) 

corr 
0.0439 -0.1575 0.0459 -0.0887 0.1739 0.2712 0.1305 1.0000 

(0.7934) (0.3450) (0.7843) (0.5964) (0.2963) (0.0995) (0.4349) (0.0000) 
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SENSITIVITY TESTS USING SIMULATION 

Numerical Experiments and Results 

The purpose of the simulation experiments was to investigate the effectiveness of the proposed 
speed harmonization system in controlling breakdown formation, to analyze the effect of drivers’ 
compliance with the speed limit on the performance of the speed harmonization system, and to 
study the effects of the proposed speed harmonization system on the emission production.  
Two scenarios were designed for each segment. 

The first scenario focused on the effects of the proposed speed harmonization system on the 
breakdown and emission control. Note that full compliance with the suggested speed limit was 
applied to these scenarios. The effects of ramp metering on the performance of the proposed 
speed harmonization system are also discussed for the segment in Chicago, IL. 

The second scenario involves analysis of the effect of drivers’ compliance with the suggested 
speed limit on the performance of the speed harmonization system. Different levels of 
compliance were considered to conduct a sensitivity analysis. 

Hypothetical Segment 

Figure 82 through figure 87 show the fundamental diagram, hazard-density diagram, temporal 
evolution of speed and flow, and emission production for the sub-segment starting 0.6 mi 
upstream of the lane drop location with and without active speed harmonization. Note that in all 
of the simulations presented for the hypothetical segment, the speed limit changes were applied 
0.6 mi upstream of the shockwave detection point. The figures clearly reveal the effectiveness of 
the speed harmonization system in controlling breakdown formation, preventing speed drop, and 
maintaining higher flow rates. However, the hazard values are higher for the simulation with 
active speed harmonization. This is mainly due to drivers’ adaptation effort to the new speed 
limit. It is expected that gradual change of speed over space can decrease the perceived risk by 
the drivers in this adaptation process. The figures also reveal the positive effect of speed 
harmonization on the emission production. This is mainly due to the effect of the speed 
harmonization system on breakdown formation. High acceleration rates, which result in more 
emission production, are more likely to happen in a congested condition. Thus, eliminating 
shockwaves and preventing breakdown formation can reduce the emission production. 
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Note: Blue denotes fundamental diagram for 25 m/s speed limit  
and green denotes hazard value. 
1 m/s = 3.28 ft/s 

Figure 82. Graph. Fundamental diagram and hazard value for simulation with no active 
speed harmonization. 

 
Note: Blue, orange, and red donate fundamental diagram for 
25, 20, and 15 m/s speed limit, respectively, and green denotes 
hazard value. 
1 m/s = 3.28 ft/s 

Figure 83. Graph. Fundamental diagram and hazard value for simulation with active speed 
harmonization. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 84. Graph. Flow and speed evolution over time for simulation with no active speed 
harmonization. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 85. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization. 
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Note: Red donates actual emission, and blue denotes moving average. 

Figure 86. Graph. Emission and moving average evolution over time for simulation with no 
active speed harmonization. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 87. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization.  

Figure 88 through figure 96 show the effects of compliance on the fundamental diagram, hazard-
density diagram, temporal evolution of speed and flow, and emission production for the sub-
segment starting 0.6 mi upstream of the lane drop location. Three levels of compliance with the 
suggested speed limit (0, 10, and 90 percent) are considered where drivers are able to drive with 
speeds up to 15 percent higher than the suggested speed limit. These figures reveal the 
importance of compliance with the suggested speed limit for the success of the speed 
harmonization system. 

In a congested driving environment, drivers mostly operate in the car-following mode where they 
should either follow their leaders or change lane to avoid a crash. This implies that once a certain 
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number of vehicles slows down to the suggested speed limit, the rest of the vehicles should slow 
down to the same speed to avoid a crash. The simulation results presented in figure 88 through 
figure 96 also confirm this hypothesis. While higher compliance levels are more favorable, the 
system is still capable of controlling breakdown formation at 10 percent compliance level. More 
detailed sensitivity analysis on the effect of compliance on the speed harmonization system is 
presented in the next section. Note that compliance with the posted speed limit is a major 
concern in speed harmonization systems. This observation can facilitate the effective 
implementation of these systems as attaining 10 percent compliance level is less challenging  
and well within the levels of compliance observed today. 

 
Note: Blue denotes 25 m/s speed limit, and green denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 88. Graph. Fundamental diagram and hazard value for simulation with active speed 
harmonization and 0 percent compliance. 
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Note: Blue and orange denote 25 and 20 m/s speed limits, 
respectively, and green denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 89. Graph. Fundamental diagram and hazard value for simulation with active speed 
harmonization and 10 percent compliance. 

 
Note: Blue and orange denote 25 and 20 m/s speed limits, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 90. Graph. Fundamental diagram and hazard value for simulation with active speed 
harmonization and 90 percent compliance. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 91. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and 0 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 92. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and 10 percent compliance. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 93. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and 90 percent compliance. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 94. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and 0 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 95. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and 10 percent compliance. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 96. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and 90 percent compliance.  

Chicago, IL 

Figure 97 through figure 100 illustrate the effectiveness of the speed harmonization system in 
suppressing shockwaves and preventing breakdown formation while maintaining flow rate along 
the segment. Note that the drivers fully complied with the suggested speed limit in these 
simulations. In figure 97, the shockwave starts 2 mi downstream of the start point and propagates 
upstream. The speed harmonization system detects this shockwave at its onset and triggers the 
new speed limit. Reducing the speed limit to a lower value prevents the shockwave formation 
and propagation (see figure 99). 
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Figure 97. Graph. Smoothed speed variations in time-space diagram for simulation without 

active speed harmonization. 

 
Note: Blue box shows the warm-up period. 

Figure 98. Graph. Flow-time diagram for simulation without active speed harmonization.  
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Figure 99. Graph. Smoothed speed variations in time-space diagram for simulation with 

active speed harmonization. 

 
Note: Blue box shows the warm-up period. 

Figure 100. Graph. Flow-time diagram for simulation with active speed harmonization. 

Figure 101 through figure 115 show the effects of compliance level on the fundamental diagram, 
hazard-density diagram, temporal evolution of speed and flow, and emission production for the 
sub-segment between milepost 0.6 and 1.2 with active speed harmonization but without active 
ramp metering. Five levels of compliance with the suggested speed limit (0, 10, 20, 40, and  
90 percent) were considered where drivers were able to drive with the speed up to 10 percent 
higher than the suggested speed limit. These figures clearly reveal the effectiveness of the speed 
harmonization system in controlling breakdown formation, preventing speed drop, maintaining 
higher flow rates, and controlling emission production. They confirm that once certain number of 
vehicles slow down to the posted speed limit, the rest of the vehicles should reduce their speed 
accordingly to avoid a crash. However, in this case, a minimum of 20 percent compliance is 
required for the success of the speed harmonization, while in the hypothetical network, the speed 
harmonization system is capable of controlling breakdown formation at 10 percent compliance 
level. This occurs due to different geometric characteristics (different number of lanes and the 
existence of on and off-ramps in the segment in Chicago, IL) and different flow patterns. 
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Note: Blue denotes 25 m/s speed limit, respectively, and green denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 101. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization without active ramp metering at 0 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 102. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization without active ramp metering at 0 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 103. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and without active ramp metering at 0 percent compliance. 

 
Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 104. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization without active ramp metering at 10 percent compliance. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 105. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization without active ramp metering at 10 percent compliance. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 106. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and without active ramp metering at 10 percent compliance. 
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Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 107. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization without active ramp metering at 20 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 108. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization without active ramp metering at 20 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 109. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and without active ramp metering at 20 percent compliance. 

 
Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 km = 0.621 mi 

Figure 110. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization without active ramp metering at 40 percent compliance. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 111. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization without active ramp metering at 40 percent compliance. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 112. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and without active ramp metering at 40 percent compliance. 
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Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 113. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization without active ramp metering at 90 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 114. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization without active ramp metering at 90 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 115. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and without active ramp metering at 90 percent compliance. 

The combined effect of ramp metering and speed harmonization on the breakdown formation 
and control is also investigated. Figure 116 through figure 130 show the effects of compliance 
level on the fundamental diagram, hazard-density diagram, temporal evolution of speed and 
flow, and emission production for the sub-segment between milepost 0.6 and 1.2 with active 
speed harmonization and active ramp metering. The combination of two systems is still capable 
of controlling breakdown formation; however, the performance of the combined system is lower 
than the performance of the speed harmonization system itself. It is important for the ramp 
metering system to keep the ramp flows at appropriate levels to avoid further breakdown 
formation while the speed harmonization system is actively controlling the breakdown formation 
and propagation. This implies that the speed harmonization and the ramp metering systems 
should be calibrated jointly to provide the required coordination. 

The hazard values are higher for the simulations with higher compliance levels (see figure 105 
and figure 120). This is mainly due to drivers’ adaptation effort to the new speed limit. As 
mentioned for the hypothetical network, it is expected that gradual change of speed over space 
can decrease the perceived risk by the drivers in this adaptation process. 

It should be noted that the presented logic may allow optimal implementation through the 
connected vehicle technology. However, with current practice in implementing speed 
harmonization systems, it is challenging to achieve this optimality. 
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Note: Blue denotes 25 m/s speed limit, and green denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 116. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization and active ramp metering at 0 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 117. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and active ramp metering at 0 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 118. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and active ramp metering at 0 percent compliance. 

 
Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 119. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization and active ramp metering at 10 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 120. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and active ramp metering at 10 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 121. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and active ramp metering at 10 percent compliance. 

 
Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 122. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization and active ramp metering at 20 percent compliance. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 123. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and active ramp metering at 20 percent compliance. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 124. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and active ramp metering at 20 percent compliance. 
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Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 125. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization and active ramp metering at 40 percent compliance. 

 
Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 126. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and active ramp metering at 40 percent compliance. 
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Note: Red denotes actual emission, and blue denotes moving average. 

Figure 127. Graph. Emission and moving average evolution over time for simulation with 
active speed harmonization and active ramp metering at 40 percent compliance. 

 
Note: Blue and orange denote 25 and 20 m/s speed limit, respectively, and green 
denotes hazard value. 
1 m/s = 3.28 ft/s 
1 km = 0.621 mi 

Figure 128. Graph. Fundamental diagram and hazard value for simulation with active 
speed harmonization and active ramp metering at 90 percent compliance. 
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Note: Blue denotes flow, and red denotes speed. 
1 km = 0.621 mi 

Figure 129. Graph. Flow and speed evolution over time for simulation with active speed 
harmonization and active ramp metering at 90 percent compliance. 

 
Note: Red denotes actual emission, and blue denotes moving average. 

Figure 130. Emission and moving average evolution over time for simulation with active 
speed harmonization and active ramp metering at 90 percent compliance. 

LIMITATIONS 

The speed harmonization system implemented in this study is primarily reactive. The 
performance of the proposed speed harmonization algorithm can be improved by adopting a 
predictive speed limit selection algorithm. It is expected that the prediction module could predict 
traffic evolution with greater accuracy when using the individual vehicles data. 

Introducing vehicle-to-vehicle communication (which provides drivers with the information 
about other drivers’ decisions, road conditions, weather conditions, etc.) can also improve the 
performance of the proposed system. Furthermore, the potential for optimizing the speed limit 
for the individual vehicles can be investigated. This requires behavioral-based models with 
adaptation capability. 
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Investigating drivers’ reaction and their response time to the speed limit changes in the 
connected vehicle environment is also necessary to improve the performance of the system, 
especially in a predictive speed harmonization system. 

RECOMMENDED NEXT STEPS AND RESEARCH IN SPEED HARMONIZATION 

Speed harmonization is an ATM strategy that adjusts the speed limit based on the prevailing 
traffic condition, road surface condition, and weather condition to improve mobility, safety, and 
environmental impacts.(140) This study investigated the effects of early shockwave detection 
based on the information from the connected vehicles on congestion and emission control using 
speed harmonization as the control strategy. The performance of the speed harmonization system 
under different drivers’ compliance levels was also investigated. The wavelet transform method 
was used to identify shockwaves at their early stages. This robust shockwave detection algorithm 
is combined by a reactive speed limit selection algorithm to provide the appropriate speed limit 
based on the prevailing traffic condition. The microsimulation model of Hamdar et al. was used 
to implement the speed harmonization system, which was calibrated against the NGSIM data.(160) 

Two highway segments, a two-lane hypothetical segment and a four-lane highway segment in 
Chicago, IL, were selected for the simulation. The simulation results confirm the effectiveness of 
the speed harmonization system in controlling breakdown formation, preventing speed drop, 
maintaining higher flow rates, and controlling emission production. 

The effect of compliance on the performance of the speed harmonization system was also 
studied. The results indicate that low levels of compliance with the suggested speed limit were 
sufficient for the success of the system. However, the minimum required compliance level varied 
based on the geometric characteristics of the highway segment and its flow rate. 

The simulation results also confirm the importance of having a coordinated ramp metering and 
speed harmonization systems. The uncoordinated ramp metering system can create further 
congestion while speed harmonization is actively controlling the congestion. 
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CHAPTER 8. ATIS 

WRTM CASE STUDY 

Simulate the Degree to Which Weather-Related Information Influences Travelers’  
Pre-Trip Travel Decisions 

Background 

Weather events such as precipitation, fog, high winds, and extreme temperatures cause low 
visibility, slick pavement, reduced roadway capacity, and other hazardous conditions on 
roadways. The disruptive effect of inclement weather on traffic has staggering impact on safety. 
About 28 percent of all highway crashes and 19 percent of all fatalities involve weather-related 
adverse conditions. Additionally, adverse weather accounts for about 25 percent of delays on 
freeways due to reduced service capacity (often at the most critical of times) and greater risk of 
accident involvement. To mitigate the impacts of adverse weather on highway travel, the FHWA 
WRTM program has been involved in research, development, and deployment of WRTM 
strategies and tools. Dealing with adverse weather requires not only sensing traffic conditions, 
but also the ability to forecast weather in real time for operational purposes. Recognizing the 
importance of tying weather and traffic management together in areas exposed to extreme 
weather situations, such as hurricanes and floods, some TMCs, such as the Houston TranStar® 
TMC, co-locate the weather service personnel with the usual traffic management agencies 
(police, traffic operators, emergency medical services, etc.). The most ambitious initiative in this 
regard is the Clarus weather system, which intended to provide TMCs with accurate real-time 
weather information.(168–170) Weather information, along with roadway traffic information 
obtained from ITS sensors, enables promising opportunities to improve traffic operations and 
management under inclement weather. 

To reduce the impacts of inclement weather events and prevent congestion before it occurs, 
weather-related advisory and control measures could be determined for predicted traffic 
conditions consistent with the forecast weather (i.e., anticipatory road weather information, 
which then can be used to inform travelers and influence their behavior). This calls for integrated 
WRTM and a traffic estimation and prediction system (TrEPS) together with an integrated 
demand model to estimate user behavior changes due to en-route and pre-trip road weather-
related information. Because the dynamics of traffic systems are complex, many situations 
necessitate strategies that anticipate unfolding conditions instead of adopting a purely  
reactive approach. 

In a previous FHWA project, a methodology for incorporating weather impacts in TrEPS was 
developed.(171,172) The project addressed supply and en-route demand aspects of the traffic 
response to adverse weather. The methodology was incorporated and tested in connection with 
the DYNASMART simulation-based DTA system, thereby providing a tool for modeling the 
effect of adverse weather on traffic system properties and performance and for supporting the 
analysis and design of traffic management strategies targeted at such conditions. The projects 
concluded that to be able to retain a similar level of service (LOS) as observed in clear weather 
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conditions, en-route WRTM strategies need to be combined with ATDM strategies to reach a 
demand reduction between 15 and 20 percent. 

The purpose of the current case study was to integrate demand models into weather responsive 
TrEPS to study and simulate behavior responses from travelers on different behavioral levels due 
to WRTM strategies in conjunction with ATDM strategies and policies to estimate and simulate 
traveler behavior responses due to pre-trip information and policy integration. 

Simulate WRTM Strategies Integrated with Demand Models 

TrEPS is an essential methodology to enable implementation and evaluation of traffic 
management, as it estimates and predicts network states. DYNASMART, developed largely 
under FHWA support, uses a simulation-based DTA approach for traffic estimation and 
prediction.(173,174) TrEPS must recognize the fact that origin-destination demand can only be 
reliably available if they are integrated with the corresponding demand models, estimating and 
predicting demand changes with underlying disaggregated behavioral models. Conversely, 
demand models will only be able to realistically reflect behavior if they incorporate dynamic and 
disaggregated LOS variables. Such disaggregated LOS variables are only available in the 
connection with a DTA approach. As a state-of-the-art TrEPS, DYNASMART combines 
advanced network algorithms and models en-route tripmaker behavior route choices in response 
to information in an assignment-simulation-based framework to provide estimates of network 
traffic conditions, predictions of network flow patterns in response to various en-route 
contemplated traffic control measures and information dissemination strategies, and anticipatory 
traveler and routing information to guide tripmakers in their travel.(175) In the previous FHWA 
project, the principal supply side and en-route demand side elements affected by adverse weather 
were systematically identified and modeled in the TrEPS framework (see figure 131).(171,172) The 
models and relations were calibrated using available observations of traffic and en-route user 
behavior in conjunction with prevailing weather events. The proposed weather-related features 
have been implemented in DYNASMART and demonstrated through successful application to a 
real world network, focusing on two aspects: assessing the impacts of adverse weather on 
transportation networks and evaluating effectiveness of en-route weather-related advisory/control 
strategies in alleviating traffic congestion due to adverse weather conditions. The procedures 
implemented immediately provide applicable tools that capture knowledge accumulated to date 
regarding weather effects on traffic. The application to a real-world network shows that the 
proposed model can be used to evaluate weather impacts on transportation networks and the 
effectiveness of weather-related VMSs and other strategies. 
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Figure 131. Illustration. Integrated DTA model with weather measures/forecast.(171) 

Program Intervention: WRTM Strategies 

Road weather information, such as en-route weather warning and route guidance, can be 
disseminated through radio, Internet, mobile devices, roadside VMS, etc. Pre-trip traveler 
information can be disseminated trough similar media channels and using social networking 
tools such as Twitter®. 

Weather warning VMSs have been implemented in the field and are shown to be effective in 
decreasing the average speed as well as the variance in speed and hence helpful in increasing 
safety and reliability for the traveling public.(176,177) Weather VMSs also proved most effective 
when adverse weather and road conditions were not easy to detect. Weather advisory VMSs, in 
the form of slippery road condition sign and fog (low visibility) sign, have been implemented 
and tested in Europe. For example, in Finland, a slippery road condition sign, implemented in 
combination with a minimum headway sign, decreased the mean speed by 0.75 mi/h with the 
steady display and by 1.31 mi/h when the sign was flashing.(176) Hogema and van der Horst 
showed that the Dutch fog warning signs, implemented in conjunction with variable speed limits, 
decreased the mean speed in fog by 5 to 6 mi/h.(178) Conversely, Cooper and Sawyer found that 
the automatic fog-warning system on the A16 motorway in England reduced the mean vehicle 
speed by approximately 2 mi/h.(179) A comprehensive synthesis of recent developments and 
applications focusing on U.S. practice is presented in Developments in Weather Responsive 
Traffic Management Strategies.(180) 

Weather-related pre-trip information has not been studied in depth so far, but pre-trip traveler 
information in general as part of ATIS strategies has been studied. It has been found that traveler 
information influences route, departure-time, and mode choice. Abdel-Aty et al. studied route 
changes in Los Angeles, CA.(181) Only a small share of the respondents (15 percent) reported 
using more than one route on their commute. Of that 15 percent, 34 percent said they changed 
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routes after actually seeing traffic conditions. Higher incomes and education levels predicted 
more route changes, perhaps reflecting schedule flexibility and arrival times expectations for 
such workers. Mahmassani et al. performed a survey of commuters in Austin, TX, to study 
information dissemination and traveler behavior. Information in the form of radio traffic reports 
appeared to have a strong impact in that regular listeners to traffic were more likely to switch 
their behavior with new information.(40) 

Mahmassani and Chang studied an adjustment and experience-based model of perceived travel 
time for departure time choice.(58) Under the myopic adjustment rule, the perceived travel time is 
only a function of the latest day’s outcome. In laboratory experiments conducted to study the 
effectiveness of different information strategies on user responses to information, Srinivasan and 
Mahmassani found that route switching model specifications, which predict whether a user will 
switch paths in a given time interval, consistently outperformed models that view the process as 
a new choice at every opportunity.(182) The authors designed an experiment whereby virtual 
commuters were given trip times on three facilities (at decision locations), information about 
congestion on the facilities, a message alerting the driver when they are stuck in a queue, and 
post-trip feedback consisting of departure time, arrival time, and trip time on the chosen path. 
Their empirical findings suggest that an individual’s negative experience with ATIS information 
has mixed effects on inertia, but congestion and information quality tend to reduce inertia. 
Drivers who experience lower switching costs and increased trip time savings tend to comply 
with information. In the sequential treatment, past negative experience relative to preferred 
arrival time seemed to increase the likelihood of compliance. Inaccurate information decreased 
drivers’ compliance propensity. 

Beyond these dimensions, only a couple of studies have addressed destination adjustment in 
response to information for discretionary (shopping) travel.(44) 

Managing demand in this case study encompasses providing travelers with information aimed at 
creating a shift in their departure times, a mode shift, or a trip cancelation so that the total travel 
demand during the peak periods can be reduced. The objective was how much demand should be 
reduced under different weather conditions in order to maintain a certain level of network 
performance and how this demand reduction could be achieved. It is critical for the traffic 
operators to provide reliable information to maintain credibility with roadway users. It is also 
important to try to minimize the potential economic losses by setting the target demand to its 
necessary level. Attempting to reduce demand beyond this level might cause significant financial 
loss to the local business and community. As such, the goal of using TrEPS is to provide traffic 
operators with the information on the optimal level of demand that can improve the network 
performance but not negatively affect the productivity under given weather conditions, 
information on which strategies the appropriate demand reduction can be achieved. 

Behavioral Dimensions: Route Choice, Departure Timing, Mode Choice, and Trip 
Cancellation 

The previous discussion of prior work reveals that efforts to devise WRTM systems have 
remained limited to a few countries and locales, although recognition of the need for such 
intervention continues to increase. Furthermore, the incorporation of demand models into 
existing tools responsive to WRTM are missing so far and constitute an important link for the 
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usefulness of WRTM applications in practice. Whereas the studies so far highlighted the en-route 
information influence through VMS on route choice decisions, this case study focuses on 
simulated behavior responses based on pre-trip information. Since WRTM strategies target short- 
to medium-term decisions due to the limited time frame of weather forecasts, the immediate 
behavioral dimensions that can be influenced with pre-trip and en-route weather-related traffic 
information are route choice departure time choice, mode choice, and trip cancellation. To 
capture the behavior in a responsive way, spatially and temporally disaggregated individual-
based models were used in conjunction with the mesoscopic DTA simulation. 

The advantages of using disaggregated individual demand models on WRTM strategies can be 
grouped into the following categories: 

• They can identify the influence of on-time trip attributes. 

• They capture disaggregated individual characteristics beyond aggregate TAZs in 
conjunction with DTA tools. 

• They could capture longer-term behavior, overcoming the limitations of tour-based 
models by including activity patterns outside the daily schedule in addition to time 
dependency, destination, and mode (in this case study, there was no full-blown activity-
based model implemented). 

• They capture short-term decision shifts, which may have substantial impacts at the 
network level. 

The modeled behavior choices for households and individuals were organized sequentially on the 
basis of the time frame over which they might take place. As a result, longer-term decisions were 
modeled first, followed by medium- and then short-term decisions. Thus, each of the models 
imposes certain restrictions on the sub-sequential decisions on a shorter time horizon. This 
conceptual framework was used for integrating the demand model with the network assignment 
procedure to evaluate WRTM strategies and is further explained in the following section. 

Framework for Evaluation 

When analyzing WRTM strategies in terms of their impacts on the flows in the network, one has 
to consider that demand, which is used as an input for the network assignment, is affected by the 
changes in the generalized cost function values produced in the traffic assignment. Thus, the 
integration of transport supply and demand models is important, as the demand and supply 
models are each formulated to use forecast outputs from the other model. 

This section discusses the feedbacks between the demand and supply models as well as what 
level of intersection for the feedback loops is appropriate to study and analyze WRTM strategies 
so that the level of service input to the demand models is the same as the output from the  
supply models and the demand input to supply models is the same as that output from the 
demand models. 

The integration of demand models and the network assignment to evaluate WRTM strategies has 
several parts. First, a base travel demand with calibrated travel costs and skims was generated, 
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which was then used to update the travel times and cost skims by solving for the multi-criterion 
dynamic user equilibrium. Second, bad weather scenarios were introduced on the network level 
with weather adjustment factors (WAFs). The changed supply on the network level was then 
used to update the travel time and cost skims by solving again for the multi-criterion dynamic 
user equilibrium. Third, the generated disaggregated user time and cost skims were fed back to 
the individual disaggregated demand model, where the travel time and cost skims propagated 
through the sequence of interrelated choices and affect particularly all the short- and medium-
term traveler decisions shown in figure 132. This includes direct impacts of weather on mode 
and departure time choice (as well as location choice, which is not shown here) through 
generalized cost functions included in the utility expressions for each choice alternative. 

However, in the medium to long term, bad weather scenarios in places where they occur 
frequently can also indirectly affect further user decisions, such as activity pattern changes and 
accessibility, as well as even longer-term choices of home, workplace, and school location  
(not illustrated). 

 
Figure 132. Illustration. WRTM modeling framework. 

The supply side used in this case study was calibrated based on a previous study and is discussed 
in more detail in Mahmassani et al.(171,172) Supply-side parameters that are expected to be 
affected by the weather condition are identified in table 22.  
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Table 22. Supply-side properties related with weather impact in DYNASMART.(171) 
Category mi/h Parameter Description 

Traffic flow 
model1 

1 Speed-intercept (mi/h)1 

2 Minimal speed (mi/h) 
3 Density break point (pcpmpl)1 

4 Jam density (pcpmpl) 
5 Shape term alpha 

Link performance 
6 Maximum service flow rate (pcphpl or vphpl) 
7 Saturation flow rate (vphpl) 
8 Posted speed limit adjustment margin (mi/h) 

Left-turn capacity 9 Effective green-to-cycle length (g/c) ratio 

Two-way stop 
sign capacity 

10 Saturation flow rate for left-turn vehicles (vphpl) 
11 Saturation flow rate for through vehicles (vphpl) 
12 Saturation flow rate for right-turn vehicles (vphpl) 

Four-way stop 
sign capacity 

13 Discharge rate for left-turn vehicles( vphpl) 
14 Discharge rate for through vehicles (vphpl) 
15 Discharge rate for right-turn vehicles (vphpl) 

Yield sign 
capacity 

16 Saturation flow rate for left-turn vehicles (vphpl) 
17 Saturation flow rate for through vehicles (vphpl) 
18 Saturation flow rate for right-turn vehicles (vphpl) 

1Only available in dual-regime model. 
pcpmpl = Passenger cars per mile per lane, pcphpl = Passenger cars per hour per lane, and  
vphpl = Vehicles per hour per lane. 

The inclement weather impact on each of these parameters is represented by a corresponding 
WAF as follows: 

 
Figure 133. Equation. WAF. 

Where: 

= The value of parameter i under a certain weather event. 
= The value of parameter i under the normal condition. 

Fi = The WAF for parameter i.(172) 

Behavioral Models 

Utility-based econometric models have their roots in economic consumer choice theory. These 
model the individual’s activity and travel decisions. In addition to discrete choice alternatives, 
these models can be enriched by other utility-based models such as hazard models to represent 
time durations. Overall, the set of economic equations provide the structure to model the 
relationship between the traveler’s characteristics, the network characteristics, and the 
environment’s characteristics, which describe the place to perform activities and also any further 
restrictions on the traveler's behavior. 

Normal
ii

EventWeather
i fFf ⋅=

EventWeather
if
Normal

if

133 



 

The utility-based choice models used to represent the mode and departure time choices follow 
the concept of an overarching daily activity travel pattern proposed by Bowman and Ben-
Akiva.(183) These models are based on an underlying system of logit models in a particular 
hierarchy. Detailed model forms and specifications are presented later in this chapter. 

Data Available and Used in Case Study 

Urban Network and Associated Weather Conditions 

The network used in this case study included the Chicago, IL, downtown area along the Kennedy 
and Edens Expressways. The network is bounded on the east by Lake Michigan and on the  
west by Cicero Avenue and Harlem Avenue. Roosevelt Road and Lake Avenue bound the  
sub-network from the south and north, respectively. The network description is illustrated in 
figure 134. The network description is as follows: 

• 4,805 links.  

o No tolled links. 

o 150 freeways. 

o 47 highways. 

o 247 ramps (59 of them are metered). 

o 4,361 arterials. 

• 1,578 nodes.  

o 545 signalized intersections. 

o 218 zones.  

• Demand period. 

o 5–11 a.m. hourly demand. 

o ~800,000 total demand. 
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Figure 134. Illustration. Network configuration and description for Chicago, IL, network. 

Weather Data 

Weather data are available from two sources; the Automated Surface Observing System (ASOS) 
stations located at airports and the roadside environmental sensor stations (ESSs) available on 
the Clarus Web site. As the historical weather data from ESS have a time resolution of  
20 min and are only available from 2009 to the present, ASOS data with 5-min resolution were 
used in conjunction with traffic detector data collected and aggregated over a 5-min interval. 
ASOS 5-min weather data are available on the National Oceanic and Atmospheric 
Administration’s National Climatic Data Center Web site. The spatial distribution  
of ASOS stations used in this case study is shown in figure 135, and their location and further 
information are listed in table 23. 
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Figure 135. Illustration. Chicago, IL, study area and adjacent ASOS stations.(184) 

Table 23. Airports with ASOS stations and available time periods for data. 

No. Airport Location 

ICAO 
Airport 

Code ASOS Data 
1 Midway International Airport Chicago, IL KMDW 2005–Present 
2 O’Hare International Airport Chicago, IL KORD 2000–Present 
3 Dupage County Airport Dupage, IL KDPA 2005–Present 
4 Chicago Executive Airport Cook, IL KPWK 2005–Present 
5 Aurora Municipal Airport Kane, IL KARR 2005–Present 

ICAO = International Civil Aviation Organization. 

Traffic Data 

In conjunction with the weather data described in the previous section, traffic data for supply 
side parameter calibration and aggregated analysis of demand data was obtained from loop 
detectors installed on freeway lanes. Historical data with the 5-min aggregation interval were 
used, and the time periods for the data varied with the study site over the 2005–2011 period. 

In selecting detector locations and collecting the data, the following criteria were mainly 
considered: 

• Choose detectors as close as possible to ASOS stations no farther than 10 mi from ASOS. 
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• Remove the influence of other external events such as incidents/accidents, work zones, 
and planned special events.  

Note that the process for removing the effect of external events is highly dependent on the 
availability of other event data. In case where there is difficulty obtaining detailed data for 
incidents, work zones, and special events, one could focus on traffic data and clean outliers  
in the dataset only. Since average measures are extracted over a longer period of time (i.e., at 
least 1 year), the influence of other external events on traffic parameters is expected to be small. 
The selected loop detector locations are illustrated in figure 136. 

For the Chicago, IL, network, traffic data were obtained from the Illinois Department of 
Transportation; 5-min aggregated data from 2009 were used. Figure 136 shows a map of the 
selected detector locations in Chicago, IL. At each location, traffic data from northbound or 
southbound directions were obtained. There was no HOV lane at any of the selected locations. 

 
©Google Maps® 2012 

Figure 136. Illustration. Selected detector locations in Chicago, IL.(185) 

Behavioral Model Data 

This section presents details of data preparation and model estimation for the individual 
behavioral models (mode choice and departure time choice). 

Mode Choice: 

The main source of data used to develop the mode choice and departure choice models in this 
study was the Chicago Household Travel Survey and National Transit Database (NTD), which 
were used to estimate travel times for the non-chosen modes (public transit in this case 
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study).(186,187) Table 24 shows the average speeds obtained from the reported travel times of the 
chosen alternatives in the travel survey data. 

Table 24 shows mode-specific average speeds obtained from the NTD for CTA, Pace, and Metra 
in 2011. The average speeds were calculated by dividing the annual vehicle revenue miles by the 
annual vehicle revenue hours for each mode. The average speeds obtained in the NTD are higher 
relative to the reported average speeds from the Chicago Household Travel Survey. Although the 
NTD speeds seem to be more realistic, the average speeds from the Chicago Household Travel 
Survey represent experienced travel time by transit users, perhaps including waiting time and 
travel time in all the segments of a transit trip (e.g., walking to/from transit stop). Therefore, for 
the purpose of this study, an average speed of 14.4 mi/h was used for the transit mode, and an 
average speed of 17.7 mi/h was used for the park & ride mode. 

Table 24. Mode-specific average speeds from the 2011 NTD. 

Mode 
Average 

Speed (mi/h) 
CTA bus 9.3 
Pace bus 13.9 
CTA rail 18.4 
Metra rail 30.7 

 
Travel costs for auto and transit are estimated using the following expressions: 

 
Figure 137. Equation. Auto travel cost estimation. 

 
Figure 138. Equation. Transit travel cost estimation. 

Since the number of transfers was unknown, three different assumptions were made to estimate 
transit cost. First, it was assumed that all the transit trips were made with no transfers. Thus, 
transit cost for all the origins and destinations were fixed and equal to $2.25. The second 
assumption was that those trips that started and ended at non-CBD zones included one transfer, 
and the rest of the trips included no transfers. The third assumption was that those trips that 
started or ended outside Chicago’s boundary had an average transit cost of $4.50, while the rest 
of the trips with transit cost $2.50. Results of the mode choice model, which are described in the 
next section, suggest that assumption two provides more realistic values of time. 

For the park & ride mode, the following equation was used to estimate travel cost (including 
transit fare and parking): 

 
Figure 139. Equation. Park & ride travel cost estimation. 

  

Auto cost ($) = 0.505 × distance + toll(s) 

Transit cost ($) = 2.25 + 0.25 × number of transfer(s) 

Park & ride (Metra) cost ($) = 0.1856 × distance + 3.5 
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Departure Time Choice 

For the departure time choice model, the initial demand as sliced into 0.5-h bins, and the 
dynamic travel times for the clear weather scenario and snow weather scenario were used to infer 
travel times. 

If for the specific disaggregated origin-destination pair, based on network nodes  
(1,5782 combinations in the Chicago network), individual trips fall within the departure time  
bin, the average observed travel time for this origin-destination and half hour bin was used. If 
there were no observations from the DTA for a specific origin-destination and time bin were 
available, the free flow travel time was used. 

It is assumed that the preferred arrival time for each individual was the arrival time under clear 
weather condition and the too late or too early arrival times under the snow weather conditions 
were then inferred based on the new travel times for each departure time bin. 

Model Development and Calibration 

Mode Choice 

The empirical analysis of mode choice in this study applies the discrete choice modeling 
framework developed by Domencich and McFadden and Ben-Akiva and Lerman.(188,189) The 
model is segmented by trips from and to the CBD and trips occurring outside of the CBD. This 
market segmentation was applied, as the transit system in Chicago focused on commuting trips 
to and from the CBD. Transit shares for trips with origin and destination outside of the CBD had 
a very low share of 3.25 percent, where the shares for trips with origin or destination in the CBD 
were 44.73 percent. In addition, there are several park & ride locations that connect people in the 
Chicago suburbs to the commuter rail system, which is included as a separate mode in the mode 
choice model for CBD trips. 

To realistically capture the substitution patterns between the different modes available, it is 
essential to consider the similarities between park & ride options and public transit option  
alone, as these two modes share unobserved attributes among each other, which violates the 
independence of irrelevant alternatives property of the multinomial logit model. To capture the 
similarity of park & ride trips and transit trips, a nested multinomial logit model was estimated 
for trips from and to the CBD and for trips outside the CBD a standard logit model is estimated 
with only the two alternatives auto and transit. The two models are described in table 25 and 
table 26. 

Table 25 and table 26 show the parameter estimates for the nested logit model for the Chicago 
metropolitan area trips from and to the CBD and the parameter estimates for the logit model for 
the Chicago metropolitan area trips outside of the CBD, respectively.  
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Table 25. Nested logit model estimation results for trips from and to the CBD. 

Variables Estimate 
Standard 

Error t-Value p-value 
Travel time -0.01 0.00 -12.00 0.00 
Cost -0.07 0.01 -10.97 0.00 
Park & ride intercept -0.71 0.12 -6.10 0.00 
Transit intercept -0.07 0.06 -1.17 0.24 
Park & ride departure 
time after 7 a.m. -0.96 0.09 -10.99 0.00 

Transit departure time 
after 7 a.m. -0.55 0.06 -9.16 0.00 

 (scale parameter) 0.70 0.06 12.47 0.00 
Correlation 0.51 0.10 -5.29* 0.00 

*Denotes that this t-value compares the difference betweennthis parameter estimate and a value of 1.0. 

Based on this information, the likelihood at convergence is -17,965.64, and the value of time is 
8.35, which is calculated as the ratio of the parameter for time over the parameter for cost. It is 
comparable to value of time obtained for Chicago in other studies. The value of time is on 
average slightly higher for trips to and from the CBD compared to trips outside of the CBD. 

Table 26. Logit model estimation results for trips outside of the CBD. 
  
  
 
 

 

 

Based on this information, the likelihood at convergence is -2,748.41, and the value of time  
is 6.31. 

Figure 140 and figure 141 showcase the nesting structure for the nested logit and logit models, 
respectively. The parameter estimates are consistent for both models. All estimates are as 
expected and highly significant. The nesting coefficient shows a medium correlation of park & 
ride with transit and is highly significant different from 0 and 1, where 0 would indicate perfect 
correlation and 1 no correlation. The transit and park & ride intercepts show the average 
attractiveness of each alternative compared to auto for all unobserved factors. In both models, the 
auto is the relative preferred mode of choice given all observed attributes being the same. Public 
transit options are rather used during rush hour period compared to off peak periods. 

 

PTϑ

Variables Estimate 
Standard 

Error t-Value p-value 
Travel time -0.01 0.00 -9.26 0.00 
Cost -0.09 0.02 -4.30 0.00 
Transit intercept -2.16 0.16 -13.15 0.00 
Transit departure time 
after 7 a.m. -0.77 0.16 -4.68 0.00 
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Figure 140. Illustration. Nested and non-nested mode choice model structure—structure 

for trips to and from the CBD. 

 
Figure 141. Illustration. Nested and non-nested mode choice model structure—structure 

for trips outside the CBD. 

In the nested logit model framework, the utility of each alternative j to an individual i can be 
represented as follows: 

 
Figure 142. Equation. Random utility model. 

Where: 

Uij = Utility of alternative j for individual i. 
xij = Exogenous characteristics of individual i and alternative j. 
b = Set of parameters. 
eij = Error term distributed Gumbel with mode 0 and scale 1. 

For the nested case, the utility for park & ride and transit can be rewritten with a shared error 
component as follows: 

 
Figure 143. Equation. Utility of park & ride and transit. 

Where: 

UP&R = Utility of park & ride. 
VP&R = Vector of park & ride. 
ePT = Shared component. 
eP&R =Error of park & ride. 
UTransit = Utility of transit. 
VTransit = Vector of transit. 
eTransit = Error of transit. 
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The unobserved component of park & ride and transit are divided into two components. The 
distinct error components for park & ride and transit are represented by independent and 
identically distributed Gumbel random variables with variance parameter . The shared 
component, ePT, is distributed such that the sum of both distributions is Gumbel (0,1), as shown 
in the following equation. 

 
Figure 144. Equation. Distribution of nested logit error terms. 

Where G(a,b) = The Gumbel distribution with mode a and scale b. 

The problem can then be described as if there are two levels of choice: a marginal choice among 
auto and public transit and a conditional choice between park & ride and transit if public transit 
is chosen. Since eP&R and eTransit are independent and identically distributed Gumbel(0, ), 
where  is the scale of the Gumbel distribution for the transit error term, the condition choice 
becomes the following: 

 
Figure 145. Equation. Conditional choice probability (nested logit). 

Where:  

i= The set of all individuals.  
j = The set of all alternatives. 

 = scale of the Gumbel distribution for the transit error term. 

The marginal choice probability between auto and public transit is given by the following: 

 
Figure 146. Equation. Marginal choice probabilities (nested logit). 

The parameters in the nested logit probability formulation in figure 146 are estimated by 
maximizing the following log likelihood function: 
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Figure 147. Equation. Log-likelihood function (nested logit). 

Where: 

I = The set of all individuals.  
yij = Choice indicator for alternative j and individual i, as defined in figure 148. 
P&R = Park & ride. 
PT = Public transit. 

 
Figure 148. Equation. Choice indicator function. 

In the case of non-CBD trips, the usual multinomial logit modeling framework is used, where the 
probability of choosing between auto and transit is given by the following: 

 
Figure 149. Equation. Choice probability. 

Where P(j) is the probability of decisionmaker i choosing mode j. 

Departure Time Choice 

For the departure time choice model, the discrete-choice modeling framework developed by 
Domencich and McFadden and Ben-Akiva and Lerman is used.(188,189) Since there are no data 
available to specifically estimate the departure time choice coefficients, the model is calibrated 
using coefficient estimates from the model developed by Noland and Small and recalibrating the 
alternative specific constants to match the departure time choices observed in Chicago.(190) 

A cost function is postulated with a particular preferred arrival time, which empirically is taken 
to be the arrival time under clear weather condition. This scheduling cost function, CS is 
calculated as follows: 

 
Figure 150. Equation. Scheduling cost function. 

Where: 

Const. = Alternative specific constant for each 30-min departure time bin. 
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T = Free-flow travel time plus the extra travel time due to recurrent congestion which we assume 
the commuter expects will occur daily during clear weather.  
TW = Added time due to non-recurrent (or unpredictable) congestion due to incident-related 
delays, which is the difference between the dynamic simulated travel time during bad weather 
condition and T.(191) 
SDE = Schedule delay early.  
SDL = Schedule delay late. 

1, 2, and 3 = Costs per minute of travel time, arriving early, and arriving late, respectively. 

As the expected travel time for the clear weather condition is T, SDE and SDL are zero in the 
clear weather condition since no delays are expected. SDE and SDL for bad weather conditions 
are defined as follows: 

 
Figure 151. Equation. Definition of schedule delay early and late. 

Table 27 shows the parameter estimates for the departure time choice model. 

Table 27. Departure time choice model parameter estimates. 

— Indicates where data are not applicable since these parameters were not estimated in this model. 

Based on the information in the table, the likelihood at convergence is -52,621.3. 

Natural Reduction 

For the base scenario with bad weather, the amount of natural reduction in demand must  
be determined, as several studies have found that traffic volumes decline during winter 
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Variables Estimate 
Standard 

Error t-Value Pr(> |t|) 
Significance 

Level 
Travel time -0.098 — — — — 
SDE -0.097 — — — — 
SDL -0.281 — — — — 

Alternative Specific Variables 
5:00–5:30 a.m. Base category 
5:31–6:00 a.m. 1.406 0.23 11.62 0.00 0 
6:01–6:30 a.m. 3.460 0.56 8.35 0.00 0 
6:31–7:00 a.m. 4.939 0.92 6.45 0.00 0 
7:01–7:30 a.m. 7.273 1.02 9.23 0.00 0 
7:31–8:00 a.m. 9.506 1.23 12.23 0.00 0 
8:01–8:30 a.m. 11.689 2.56 7.32 0.00 0 
8:30–9:00 a.m. 13.698 2.34 13.11 0.00 0 
9:01–9:30 a.m. 15.382 2.86 14.23 0.00 0 
9:31–10:00 a.m. 17.123 3.21 9.10 0.00 0 
10:01–10:30 a.m. 16.060 3.51 8.11 0.00 0 
10:31–11:00 a.m. 13.110 2.32 8.32 0.00 0 
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storms.(192–194) This natural demand reduction without demand management strategies may be 
due to several reasons, including trip cancelation, teleworking, mode shifts, and departure time 
shifts. Hanbali found demand reductions ranging from 7 to 56 percent during snow fall 
depending on time of day, day of the week, and roadway type as well as the strength of 
snowfall.(194)  

For the Chicago, IL, case, the average traffic volumes for a moderate snow day and a clear 
weather day from several detectors on freeways (see figure 136) are compared to find an 
aggregated natural demand reduction to apply to the base weather scenario. The resulting 
difference in traffic is illustrated in figure 152. Overall, the observed reduction in traffic is  
8.95 percent. Due to a lack of additional data sources (e.g., daily transit counts, detector data on 
peripheral roads, or Travel Household Survey data for bad and good weather days), it is unclear 
if a decrease in traffic volume is due to route choice, mode choices, departure time choice, or trip 
cancellation. However, the analysis of ICM case study suggests that the traffic reduction is 
mostly due to trip cancellation, as no mode shifts were observed, and the reductions were 
observed during non-peak hours when the infrastructure was not at capacity. 

 
Figure 152. Graph. Traffic detector volumes on clear weather days and a median snow day 

in Chicago, IL. 

Policy Intervention: Weather-Related Delay of Schools 

A weather-related cancellation or delay of an institution, operation, or event as a result of 
inclement weather is common in many parts of the world, as well as in warmer parts of the 
United States, which are less likely to handle snow. Among institutions, schools are likely to 
close or delay when snow impairs travel. This is mostly due to concern about safety in order to 
keep those traveling to the location of the schools in an effort to prevent accidents.  

Many countries and smaller jurisdictions have mandates for a minimum number of school days 
in a year. In order to meet these requirements, many public school systems and private schools 
that can expect to be closed at times during the year by inclement weather will often build a few 
extra days into their calendar for snow closures. Instead of cancelling an entire school day, some 
schools may delay opening by 1 or 2 h or announce a particular opening time. This can be 
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advantageous in places where schools are not charged a snow day by delaying their opening. 
This is particularly common during lighter snowfalls in areas accustomed to moderate winter 
snowfall, such as the New York metropolitan area and adjacent southern New England; 
Washington, DC; Philadelphia, PA; and Baltimore, MD. In Chicago, there is no such policy in 
place. In order to prevent accidents as well as other problems that may result from travel in 
inclement weather, such a policy could be suggested and implemented on certain days in, 
especially as providing information to parents is simple and affordable through Internet  
media outlets.  

In the event of snow, schools could delay opening by 1 or 2 h and extend the day for the time 
missed in the morning. Such a policy could have a significant effect since school-related trips 
have a very narrow departure time distribution during the peak hour. In Chicago, during the 
morning peak between 5 and 10 a.m., school-related trips constitute 8.9 percent of the traffic 
volume, and its departure time distribution is much narrower than work trips in the same time 
period. Figure 153 shows the distribution of work departure time and school trip departure time 
for autos. By shifting the school related trips by 1 h, the departure time distribution could be 
flattened and expanded toward later hours, which is especially interesting, as departure time 
interventions, such as earlier dissemination of information, shifts departure times toward  
earlier hours.  

 
Figure 153. Graph. Morning peak departure time distribution for school trips and work 

trips. 

Sensitivity Analysis Using Simulation for Different Scenarios 

Experiment Design—Weather Scenario: 

For the weather scenario, a median snow day on February 22, 2011, in Chicago, IL, was chosen. 
The entire simulation horizon was 8 h, where vehicles were generated and loaded onto the 
network during the first 6 h based on the origin-destination matrix, which represents the traffic 
demand between 5 and 11 a.m. For the remaining 2 h, vehicles were simulated so that the 
generated vehicles reached their destinations. 
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Experimental Design—Demand Scenarios: 

A total of 12 demand scenarios were prepared: one for the benchmark case, which was  
100 percent of the demand under the normal weather condition (i.e., no snow); and the other  
11 scenarios with different demand levels under snow condition. For the generation of the  
11 scenarios, researchers started with the full demand (100 percent) and reduced the total 
demand with different demand management strategies as shown in table 28. 

Table 28. Demand scenario overview and description. 
Scenario 
Number Scenario Name Demand Input Description 

1 Base— normal 
weather 

Normal weather and normal 
traffic 

Calibrated base scenario, which builds 
the basis for the subsequent scenarios 

2 Base—weather Moderate snow weather and 
normal traffic 

Scenario to estimate the weather 
impact on the network LOS 

3 Moderate 
weather—
natural 

Moderate weather, natural 
mode choice, and natural 
departure time spread 

Scenario to estimate the LOS based on 
the natural reduction in trips and 
spread out of the peak hour 

4 Moderate 
weather—
natural and 
demand 
management 

Moderate weather, natural 
mode choice, natural 
departure time spread, and 
VMS 

Scenario to estimate the LOS based on 
the natural reduction in trips and 
spread out of the peak hour 

4.1.1 and 
4.1.2 

Mode choice 50 and 100 percent 
information 

Scenario to estimate the LOS based on 
the natural reduction in trips and mode 
choice 

4.2.1 and 
4.2.2 

Departure time 
choice 

50 and 100 percent 
information 

Scenario to estimate the LOS based on 
the natural reduction in trips and 
departure time choice 

5 Policy Educational trips 1 h later Scenario to estimate the LOS based on 
the natural reduction in trips and 
school opening delay of 1 h 

6 Moderate 
weather—
demand 
management 
and policy 

Moderate weather, natural 
reduction, mode choice, 
departure time choice, and 
policy intervention  

Scenario to reach the same LOS based 
on the natural reduction in trips and 
spread out of the peak hour, plus the 
on-route trip changes based on VMS, 
plus pre-trip changes based on earlier 
dissemination of weather information 

6.1  4.1.1, 4.2.1, and 5  
6.2  4.1.2, 4.2.2, and 5  

Note: Blank cells indicate not applicable. 
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DYNASMART Simulation 

Analysis of the Results: 

The following network performance measures are defined to illustrate network-level traffic 
conditions under different weather and demand scenarios: 

• Accumulated percentage of out vehicles: The percentage of vehicles arriving at their 
destinations from the start of the simulation until a given time stamp t. It can be 
expressed in the following form: 

 
Figure 154. Equation. Accumulated percentage of out vehicles. 

Where: 

OutVehicle = Accumulated number of vehicles arriving their destinations from time 0 till 
time t in each scenario. 
TotalVehicle =Accumulated total number of vehicles loaded onto the network from time 
0 till time t in each scenario. 

• Percentage change in average travel time: The percentage change in the travel time 
between a weather scenario and the base non-weather scenario: 

 
Figure 155. Equation. Percentage change in average travel time. 

Where: 

Avg(TTimeBase) = Average travel time for full demand in the base case without weather 
feature. 
Avg(TTime) = Average travel for each weather scenario. 

• Percentage change in average stop time: The percentage change in the stop time 
between a weather scenario and the base non-weather scenario: 

 
Figure 156. Equation. Percentage change in average stop time. 

Where: 

Avg (STime) = Average stop time for k percent of full demand in weather scenario i. 
Avg (STimeBase) = Average stop time for full demand in the base case without weather 
feature. 
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Scenarios 1 and 2: 

Scenarios 1 and 2 are each used to establish a benchmark case to which the different other 
scenarios are compared. The first benchmark case, scenario 1, simulates traffic under clear 
weather condition with 100 percent demand. This scenario is used as the base scenario as 
described in figure 154 and figure 155. Scenario 1 is also used to establish a desired level of 
service which the different scenarios try to reach in order to maintain the same level of network 
performance as under clear weather condition.  

Scenario 2 is used to establish the worst-case scenario under median snow condition with  
100 percent demand and no management strategy, as well as no natural reduction. This scenario 
can be used to establish measures of improvement for the rest of the scenarios but also as an 
illustration of the impact of a median snow day on the network performance.  

Figure 157 and figure 158 present the network density level using color coding where red = 
congested and green = uncongested for scenarios 1 and 2. In the figures, the time point for the 
current condition is set to 9:30 a.m. By comparing the two figures, it is clear that the network 
under clear weather is less congested than under median snow weather. Under snow weather 
condition, congested links (red) are more often observed and generally more widely spread  
in the network. 

 

 
Figure 157. Illustration. Simulated network density for scenarios 1 and 2 with 100 percent 

demand—clear weather condition. 
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Figure 158. Illustration. Simulated network density for scenarios 1 and 2 with 100 percent 

demand—median snow day. 

Figure 159 through figure 162 show a link-specific speed and flow distribution over the 
simulation time from 5 to 11 a.m. The selected link is the Kennedy Expressway between Pulaski 
Road and North Cicero Avenue westbound. 

 
Figure 159. Illustration. Simulated link speed distribution for scenarios 1 and 2 for the 

Kennedy Expressway between Pulaski Road and North Cicero Avenue westbound—clear 
weather condition. 

 
Figure 160. Illustration. Simulated link speed distribution for scenarios 1 and 2 for the 
Kennedy Expressway between Pulaski Road and North Cicero Avenue westbound— 

median snow day. 
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Figure 161. Illustration. Traffic volume distribution for scenarios 1 and 2 for the Kennedy 
Expressway between Pulaski Road and North Cicero Avenue westbound—clear weather 

condition. 

 
Figure 162. Illustration. Traffic volume distribution for scenarios 1 and 2 for the Kennedy 
Expressway between Pulaski Road and North Cicero Avenue westbound—median snow 

day. 

Comparing figure 159 and figure 160 shows the impact of the weather condition drastically, as 
the speed on the link breaks down at around 10 a.m. in the morning, which can also be seen 
when comparing the traffic volumes of these two links. The average travel time increases from 
scenario 1 to scenario 2 from 30.2 to 38.6 min, which is an average increase of 27.81 percent. 
Considering a value of time in Chicago of around $8/h and a total demand of ~800,000 travelers, 
the additional travel time due to bad weather implies external costs of $896,000 for the morning 
period between 5 and 11 a.m. 

Scenario 3: 

Scenario 3 uses the natural demand reduction. No demand management strategies are in place. It 
includes the representation of individual behavior in canceling trips and teleworking due to bad 
weather. An 8.95 percent total reduction in demand is applied throughout the different departure 
time bins, as shown in figure 152 based on aggregated data obtained from traffic detectors. 
Figure 163 and figure 164 show the comparison of the network densities between scenarios 2 
and 3. The comparison shows the reduction in congestion between these two scenarios, as  
there are fewer congested links visible on figure 164 compared to figure 163. The average  
travel time decreases from 38.6 to 35.41 min, which corresponds to a reduction in travel time of 
8.26 percent. 
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Figure 163. Illustration. Simulated network density for scenario 2 at 9:30 a.m. 

 

 
Figure 164. Illustration. Simulated network density for scenario 3 at 9:30 a.m. 

Figure 165 through figure 168 show the comparison of link-specific speed and flow distribution 
over the simulation time from 5 to 11 a.m. similar to the one in figure 159 through figure 162. It 
can be seen that the flow is slightly lower in the beginning due to the demand reduction, but the 
free-flow speed can be obtained for a longer period of time. Whereas in scenario 1, the 
congestion reduces the speed to 10 mi/h by 10:30 a.m., and the speed with demand reduction 
maintains slightly higher for another 20 min. Similar observations can be made by comparing the 
flow distributions, where scenario 3 shows slightly higher volumes from 9:30 a.m. on. 
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Figure 165. Illustration. Simulated link speed distribution for scenario 2 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 

 
Figure 166. Illustration. Simulated link speed for scenario 3 for the Kennedy Expressway 

between Pulaski Road and North Cicero Avenue westbound. 

 
Figure 167. Illustration. Traffic volume distribution for scenario 2 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 

 
Figure 168. Illustration. Traffic volume distribution for scenario 3 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 
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Scenarios 4.1.1 and 4.1.2: 

Scenarios 4.1.1 and 4.1.2 represent a demand management strategy on top of the natural demand 
reduction to inform travelers of the travel times with transit compared to the auto travel times. 
The two scenarios make the assumption that 50 and 100 percent of the travelers are receiving this 
information, respectively. The following figures only show the difference between scenarios 2 
and 4.1.2, where 100 percent of the travelers are informed. Figure 163 and figure 169 illustrate 
the effect of the mode choice for scenario 2 compared to scenario 4.1.2 on the network density. 
The difference is especially visible when comparing the more congested CBD from scenario 2 to 
scenario 4.1.2, as the mode choice has mostly an effect on trips from and to the CBD, whereas 
trips outside the CBD remain nearly unaffected. In total, 7.31 percent of the to and from the CBD 
are projected to switch to transit under snowy condition and 100 percent information, whereas 
this number nearly halves when assuming 50 percent information to 3.67 percent.  

 

 
Figure 169. Illustration. Simulated network density for scenario 4.1.2 at 9:30 a.m. 

Figure 170 and figure 171 show the impact of the mode choice demand strategy on the link-
specific speed and flow distribution. It can be seen that the free-flow speed recovers after the 
breakdown before it comes to a second breakdown with an overall slightly higher traffic volume. 

The average travel time decreases from 38.6 to 34.62 and 32.16 min, respectively, for  
scenarios 4.1.1 and 4.1.2. This corresponds to travel time reduction of 10.31 and 16.68 percent. 
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Figure 170. Illustration. Simulated link speed distribution for scenario 4.1.2 for the 
Kennedy Expressway between Pulaski Road and North Cicero Avenue westbound. 

 
Figure 171. Illustration. Traffic volume distribution for scenario 4.1.2 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 

Scenario 4.2.1 and Scenario 4.2.2: 

Scenarios 4.2.1 and 4.2.2 represent a demand management strategy on top of the natural demand 
reduction to inform travelers of their expected auto travel time delays due to the weather 
condition to suggest leaving earlier or later to avoid delays. The two scenarios make the 
assumption that 50 and 100 percent of the travelers are receiving this information, respectively. 
The average expected delay for the trips is a minimum of 8 min small and a maximum of 31 min. 
The differences to scenario 2 are negligible, as the simulated mode shifts are too small to make 
an impact on the network wide traffic. Because of the small differences, the results are not  
shown here. The average travel time decreases from 38.6 min to 38.18 and 37.86 min for 
scenarios 4.2.1 and 4.2.2, respectively, which corresponds to a reduction in travel time of  
1.08 and 1.91 percent. 

Scenario 5: 

Scenario 5 examines the effect of delaying school openings by 1 h during bad weather 
occurrences, as practiced in other States and cities (not including Illinois). Such policy 
interventions are mainly used for security reasons but also have an impact on traffic. The 
scenario is configured as described in the section, “Paragraph Policy Intervention: Weather-
Related Delay of Schools” and illustrates the impact of such a policy on a median snow day on 
the network performance. School-related trips make up 8.9 percent of the traffic volume during 
the simulated morning hours, and its departure time distribution is much narrower distributed 
than work trips in the same time period. By shifting school related trips an hour later, the peak 
traffic can be flattened out, and the resulting difference in network densities are illustrated in 
figure 163 and figure 172.  
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Figure 172. Illustration. Simulated network density for scenario 5 at 9:30 a.m. 

Figure 173 through figure 174 show the comparison of a link speed and volume impact of school 
delay policy. In the comparison, it can be seen how the breakdown happens later and gets 
recovered soon after in the school delay policy scenario. 

 
Figure 173. Illustration. Simulated link speed distribution for scenario 5 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 

 
Figure 174. Illustration. Traffic volume distribution for scenario 5 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 
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Scenarios 6.1 and 6.2: 

Scenarios 6.1 and 6.2 combine all demand management strategies and policy implementation, 
with 50 and 100 percent information, respectively. Figure 163 and figure 175 show the impact of 
scenario 2 in comparison to scenario 6.1. The speeds and densities are fully recovering the 
benchmark scenario 1.  

 

 
Figure 175. Illustration. Simulated network density for scenario 6.1 at 9:30 a.m. 

Figure 176 and figure 177 show the comparison of a link speed and volume impact of moderate 
weather, natural reduction, mode choice, departure time choice, and policy intervention. 

 

 
Figure 176. Illustration. Simulated link speed distribution for scenario 6.1 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 
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Figure 177. Illustration. Traffic volume distribution for scenario 6.1 for the Kennedy 

Expressway between Pulaski Road and North Cicero Avenue westbound. 

Scenario Comparison and Discussion: 

Figure 178 shows the accumulated percentage of out vehicles represented throughput of the 
network under different scenarios. One might notice that there are jumps around the 60-min 
mark. This is due to the time-dependent demand. 

Compared to the benchmark case (i.e., scenario 1) where no snow event is present, the snow 
effect significantly deteriorates the network throughput if the original full demand is used and no 
demand management is applied (i.e., scenario 2 median snow with 100 percent demand). It can 
be seen that the network throughput decreases by about 7 percent due to weather at minute 120. 
The network performance improves as the demand level decreases. By utilizing all demand 
management strategies with 100 percent information, the throughput is slightly higher than the 
throughput of scenario 1, and with 50 percent information, the throughput is lower. 

Figure 179 presents the percentage change in the average travel time and the average stop time 
for different scenarios relative to the benchmark case. With scenario 6.2, both measures are 
recovered to the level of the benchmark case. 

 
Figure 178. Graph. Accumulated percentage of out vehicle for different scenarios. 
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Figure 179. Graph. Changes in average travel time and average stop time relative to the 

benchmark. 

These results depict a comprehensive list of demand management and policy strategy scenarios 
evaluated in this study and the corresponding improvement for network-wide travelers. In 
general, strategies that target mode choice and effective policies that target peak spreading  
have good potential to improve the cost and reliability of travel by reducing travel time. By 
distributing better information to the traveler and comparative travel times with transit mode 
alternatives, travel time can be reduced while also allowing users to exert greater control over 
their travel schedules. 

Compared to the do-nothing case (scenarios 2 and 3), the integration of behavioral models that 
are sensitive to policy changes and management strategies, scenarios were simulated that 
significantly improve the time-dependent average travel time. Information and demand 
management strategies are highly effective in mitigating recurrent congestion, reducing travel 
time, and improving travel time reliability for both critical origin-destination pairs and networks. 

Limitations 

The limitations of this case study are mostly due to data unavailability and missing information 
for calibrating parameters used in the disaggregated choice models. For the simulated responses 
of individuals, a fixed compliance rate is assumed. In addition, the perfect/imperfect knowledge 
assumption used in the sensitivity analysis is chosen arbitrarily. The assumption of the natural 
reduction used in scenario 2 is based on aggregated information from loop detectors and is 
randomly applied to the travelers. Data to estimate individual behavioral models, such as travel 
surveys during bad weather and good weather, would help researchers to better understand the 
observed reduction as well as the nature of this reduction that travelers dodge to the peripheral 
network as part of their route choice behavior during bad weather conditions. Furthermore, 
certain individual decisions can only be understood when applied within a full-blown activity 
based model. Such decisions (e.g., substitution patterns, location choice changes, etc.) cannot be 
modeled with single decision models only for a part of the day. Also, longer-term effects for bad 
weather situations, where the occurrence is regularly, were not included in this case study but 
could be part of the observed natural reduction to some extent.  
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Further sensitivity analysis could be made to capture the exact combination of information 
compliance needed to reach the presented base scenario. This sensitivity analysis could also be 
coupled with VMS. DYNASMART has the capabilities to include VMS strategies during the 
simulation as part of the route choice algorithm. Also, the relative coarse time interval of 30 min 
for the departure time choice model could be refined to allow finer behavioral responses in the 
simulated departure time choices. 

Recommended Next Steps and Research 

The presented case study demonstrated how to include individual behavior models to evaluate 
and simulate the effectiveness of particular WRTM strategies in a given network during bad 
weather conditions. These allow the model user/agency personnel to compare network 
performance overall as well as portions of the network, origin-destination pairs or user segments 
with and without WRTM, as well as for different WRTM strategies. This provides an 
understandable method to quantify and characterize the need for and effectiveness of WRTM 
and to communicate these impacts to other personnel, decisionmakers, and system users as part 
of demand management strategies. This study conveys both the dynamic nature of the 
information, the network context, as well as the impact on users’ decisions on trip cancellation, 
mode choice, departure time choice, and route choices. 

The simulated demand strategies needed to offset the weather-induced network performance 
impairment and maintain the normal conditions level of service are a combination of transit 
travel time information given to auto users and policy implementation to shift school openings 
by an hour. The reduction depends on the nature, intensity, severity, and duration of the weather 
conditions. This information provides a practical target to attain through various information 
dissemination measures, activity cancellation or rescheduling measures, and possible incentive 
schemes to reach the desired level of reduction and shift in demand. The case scenario presented 
here shows one possible weather condition and a demand strategy of how to reduce the demand 
to reach LOS comparable to clear weather conditions. With different effort in dissemination of 
information to the auto user, a certain level of information, knowledge, and awareness could be 
reached to change mode and departure time decisions of individuals to reach the benchmark 
LOS. Models to estimate information and attitude/awareness dissemination are still relatively 
new to this field, but agent-based models as presented in chapter 6 are promising to model and 
simulate such scenarios. 

In all areas, the responses of travelers to information, messaging, guidance, and controls are an 
essential ingredient to the overall effectiveness of management strategies. These decisions play a 
central role in this case study. While the methodology applied in this study provides the 
necessary framework and structure to capture these decisions and their evolution, it became clear 
during the study that a stronger observational basis is needed with regard to what users actually 
do in bad weather and under different interventions. The study team believes that a targeted 
application with tracking of a sample of users would contribute significantly to the ability of 
agencies to effectively deploy WRTM. Such a behavior tracking study that would allow 
observation of actual user responses to WRTM strategies, with particular focus on demand 
management strategies, would fill the data gap and minimize the assumptions, which have to be 
made for simulating best strategies. As noted, the lack of behavior tracking studies is an 
important gap in existing knowledge and a critical opportunity from the standpoint of agencies’ 
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abilities to mitigate inclement weather. The results would be incorporated in the presented 
methodology to improve its ability to predict ways to attain desired demand reduction targets. 

In large metropolitan areas, it is also important to incorporate alternative transportation modes in 
the WRTM analysis, as shown in this case study. In the simulation of the Chicago, IL, network 
under snowy conditions, public transit plays an important role in providing and maintaining 
mobility.  

This case study also showed that different strategies are not additive in their impacts, and a best 
combination needs to be carefully determined for specific weather conditions. 

 ICM CASE STUDY  

Travel Behavior Variability and Intervention Following Active Traffic Management 
System (ATMS) Case Study 

This section describes research performed on the Interstate 5 corridor in Seattle, WA, following 
the introduction of an automated ATMS on the corridor. It provides a summary of how 
information interventions are related to travel behavior variability and examines conditions of 
variability and demand. The other potential benefits associated with ATMS investments, such as 
improvements in safety, reductions in delays, and greenhouse gas emissions through speed 
harmonization, ramp metering, and other traffic management techniques were discussed 
previously in this chapter. 

In the course of the research, variability in weather conditions was found to significantly 
influence some travel behaviors. Though weather conditions are not typically reported in the 
ATMS data (except for unusual circumstances), the effects of variable weather conditions are 
important in evaluating the larger context of the ATMS operational effects. 

The purpose of this study has been to examine facility users’ reactions to information 
(specifically ATMS-transmitted congestion, weather, and incidents information and operational 
guidance) provided by VMSs and supplemented by other freeway management techniques such 
as ramp metering. In this context, there are a number of behavioral dimensions that can be 
examined that affect behavior.  

The ATMS system is an additional freeway management strategy that has not been widely used 
in the United States. Studying a corridor that has had a system in operation for some time allows 
for the recording of behavioral choices by travelers in the corridor who have had a chance to use 
the real-time information and adjust their behavior in response to the corridor’s operations. 

Program Interventions on Northbound Interstate 5 Corridor in Seattle, WA  

Interstate 5 is the westernmost freeway that runs the length of the continental United States. The 
freeway traverses California, Oregon, and Washington. It also traverses the middle of several 
major metropolitan areas, including San Diego, Los Angeles, and Sacramento, CA; Portland, 
OR; and Seattle, WA.  
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Within the Seattle, WA, area, Interstate 5 is the major north-south freeway. As the major 
freeway, much of the alignment has four or five lanes in each direction as well as an HOV lane 
through much of the corridor.  

The segment of Interstate 5 studied for this research is the northbound segment between Boeing 
Field and Interstate 90, almost entirely within the city limits of Seattle, WA. This portion of the 
corridor is recognized for having significant congestion throughout multiple hours of many 
weekdays as a result of merging traffic from Interstate 90. There are also lane reductions that 
occur with the opening and closing of the Interstate 5 reversible lanes that begin downtown. 
Finally, multiple movements as drivers enter and leave the local street system in the downtown 
area can contribute to congestion in this corridor segment.  

To manage this congestion over the last few decades, the Washington State Department of 
Transportation (WSDOT) has implemented several tools to inform drivers of impending 
congestion. Improvements began by initiating ramp metering in the corridor. Other tools used 
include destination travel time signage and an ATMS that reports upstream warnings of traffic 
congestion as well as variable speed limits by lane. The primary purpose of the ATMS system 
was to reduce the occurrence of vehicle collisions and the related problem of additional non-
recurring congestion. These signs are located on a series of gantries over the road at generally 
0.5-mi spacing.  

Behavioral Dimensions: Route Choice, Departure Timing, and Trip Cancellation 

ATMS may influence a number of decisions that travelers make. These decisions include the 
following: 

• Trip cancellation: A traveler must first decide whether or not to make a trip before 
choosing any elements of the trip. The tendency to make the same decisions over time is 
often referred to as “inertia.” Information about traffic or weather conditions made public 
through media sources can influence whether or not to make a trip, and if so, which mode 
and route to take.  

• Destination choice: A traveler may decide to change his/her destination. While many 
destinations are fixed from one day to another, such as work and school sites for most 
people, other trip destinations can vary, such as choices of retail stores.  

• Time-of-day choice: A traveler may decide to change the time of day that a trip is made, 
presumably to a time when congestion is eased. A traveler is informed about travel times 
and congestion through a variety of sources in the media. 

• Mode choice: A traveler can decide whether or not to drive alone, share a ride, or use 
another mode. A traveler may make this decision based on weather reports or on travel 
conditions in the media. 

• Path choice: A traveler can decide while en-route to choose another path. Information on 
this choice is available from roadside signs, cell phone traffic applications, traffic radio 
reports, or other real-time sources. 
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Data Available and Used in Case Study 

Traffic Volume and Speed Data 

WSDOT maintains an FTP site with 6 months of performance data on area roadways. These data 
are available in 20-s or 5-min increments. As this deals with comparative travel demand choices, 
the 5-min data are the most applicable.  

ATMS Activation Data 

The ATMS system is automated so that no deliberate human decision is required for the signs to 
activate. A summary of the system design is available online. The signs contain advisory 
messages such as “slow traffic ahead” or “reduced speed zone,” with lane-assigned variable 
speed limits (between 30 and 50 mi/h) automatically activated when appropriate.  

WSDOT maintains an internal log of signage registered each minute for each VMS in the region, 
including the ATMS system. The logs contain the mileage marker of each sign or sign gantry as 
well as time and the message indicated at each sign.  

Weather Data and Selection of Weather Days 

The ASOS program is a joint effort of the National Weather Service (NWS), the Federal 
Aviation Administration, and the Department of Defense. ASOS is designed to support weather 
forecast activities and aviation operations and, at the same time, support the needs of the 
meteorological, hydrological, and climatological research communities.  

The program maintains a record of 5-min and hourly weather conditions at Boeing Field, which 
is adjacent to the corridor. Weather data are summarized hourly for temperature, conditions, 
recorded precipitation, wind speeds, and a number of other meteorological measurements. For 
this study, the weather conditions and the prior hour’s recorded precipitation were the primary 
conditions of interest in determining travel behavior choices. 

The days selected for review were between Monday, September 11, 2012, and Thursday, 
December 6, 2012. Fridays were excluded for being atypical work days, and Saturdays and 
Sundays were excluded because weekend travel is different from weekdays. In addition, 
November 21 and 22, 2012, were excluded because of the variation in traffic that occurs on  
these days. Finally, home game days of the Seattle Mariners were excluded. 

The remaining days were separated into the following three categories based on type of  
weather condition: 

• Dry days: Days with no precipitation or unusual weather occurrences. 

• Drizzle days: Days with at least 8 h of major travel periods (5 a.m. to 9 p.m.) 
experiencing precipitation, with the total daily amount under 0.10 inch. 

163 



 

• Rainy days: Days with at least 8 h of major travel periods (5 a.m. to 9 p.m.) experiencing 
precipitation, with the total daily amount exceeding 0.50 inch.  

Days that were clearly transitional were excluded from the sampling. The days selected for these 
typologies are shown in table 29. 

Table 29. Boeing Field weather data. 

Date Day 

Precipitation 
Total 

(inches) 

Recorded 
Hours 

Precipitation 

Precipitation 
Hours  

(5 a.m.–9 p.m.) Category of Day 
9/10/12 Monday None None None Dry 
9/11/12 Tuesday None None None Dry 
9/12/12 Wednesday None None None Dry 
9/13/12 Thursday None None None Dry 
9/17/12 Monday None None None Exclude Seattle Mariners 
9/18/12 Tuesday None None None Exclude Seattle Mariners 
9/19/12 Wednesday None None None Exclude Seattle Mariners 
9/20/12 Thursday None None None Dry 
9/24/12 Monday None None None Dry 
9/25/12 Tuesday None None None Dry 
9/26/12 Wednesday None None None Dry 
9/27/12 Thursday None None None Dry 
10/1/12 Monday None None None Exclude Seattle Mariners 
10/2/12 Tuesday None None None Exclude Seattle Mariners 
10/3/12 Wednesday None None None Exclude Seattle Mariners 
10/4/12 Thursday None None None Dry 
10/8/12 Monday None None None Exclude Columbus Day 
10/9/12 Tuesday None None None Dry 
10/10/12 Wednesday None None None Dry 
10/11/12 Thursday None None None Dry 
10/15/12 Monday 0.3 12 11 Drizzle 
10/16/12 Tuesday None None None Dry 
10/17/12 Wednesday None None None Dry 
10/18/12 Thursday 1.04 4 2 Transitional 
10/22/12 Monday 0.35 10 9 Rain 
10/23/12 Tuesday T 4 2 Drizzle 
10/24/12 Wednesday 0.19 17 10 Drizzle 
10/25/12 Thursday None None None Dry 
10/29/12 Monday 0.7 9 5 Rain 
10/30/12 Tuesday 1.39 19 15 Rain 
10/31/12 Wednesday 0.72 16 11 Rain 
11/1/12 Thursday 0.39 10 5 Rain 
11/5/12 Monday 0.05 1 0 Dry 
11/6/12 Tuesday 0.01 1 1 Dry 
11/7/12 Wednesday None None None Dry 
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Date Day 

Precipitation 
Total 

(inches) 

Recorded 
Hours 

Precipitation 

Precipitation 
Hours  

(5 a.m.–9 p.m.) Category of Day 
11/8/12 Thursday None None None Dry 
11/12/12 Monday 0.16 6 2 Drizzle 
11/13/12 Tuesday 0.19 9 4 Drizzle 
11/14/12 Wednesday None None None Dry 
11/15/12 Thursday None None None Dry 
11/19/12 Monday 2.38 15 11 Rain 
11/20/12 Tuesday 0.23 5 4 Rain 
11/21/12 Wednesday 0.59 14 9 Excluded (Thanksgiving) 
11/22/12 Thursday 0.02 2 0 Excluded (Thanksgiving) 
11/26/12 Monday None None None Dry 
11/27/12 Tuesday None None None Dry 
11/28/12 Wednesday 0.12 8 8 Drizzle 
11/29/12 Thursday 0.12 14 11 Drizzle 
12/3/12 Monday 0.77  13 Rain 
12/4/12 Tuesday 0.53 21 15 Rain 
12/5/12 Wednesday None None None Dry 
12/6/12 Thursday 0.07 9 7 Drizzle 

Source: Boeing Field Weather Station Data, NWS 

Transit Demand Data 

Daily transit boardings were available for a number of bus, light rail, and commuter rail services 
that operate in the corridor under monitor by the Sound Transit District. An automated passenger 
counting (APC) system recorded northbound data on Sound Transit buses (Routes 577, 590, 592, 
593, 594, 595, and 596) that operate on the Interstate 5 corridor and commuter rail services that 
operate on railroad tracks adjacent to the corridor for the study period. The link light rail system, 
which generally follows the corridor, did not have a recording of each transit trip, so a surrogate 
measure of the recorded trips from passengers’ transit cards at the three southernmost stations 
(Sea-Tac Airport, Tukwila International Boulevard, and Rainier Beach) were used to determine 
variability. Additionally, King County Department of Transportation Metro Transit Division 
operates two routes in the corridor (routes 101 and 150), but the APC equipment on these routes 
was not comprehensively installed, so that these data were not examined. 

In addition, there were two transit-related system changes that occurred that were accounted for 
in the mode choice data only. On September 29, 2012, the free-fare zone for transit riders in 
downtown Seattle was discontinued. That potentially could have affected the way that data were 
registered in the corridor (even though the fare policy change did not directly affect transit riders 
in the corridor). A second transit occurrence was the extending of the Sounder commuter rail 
from downtown Tacoma to South Tacoma and Lakewood station on October 8, 2012. For these 
reasons, mode choice data before October 8, 2012, were excluded. 
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Findings 

The research yielded findings for a variety of circumstances. Note that these findings point to 
variability in observed aggregate travel conditions rather than individual travel behavior. As a 
result, the findings represent key observations, but the actual causes of the variability can only be 
interpreted. Future research should focus on behavioral tracking studies along ICM and ATMS 
corridors to capture individual responses over time.  

Inertia/Trip Cancellation 

When examining the overall demand in the corridor, it is clear that there is variation in demand 
that is affected by weather conditions. To examine this, the median days of the three weather 
types were examined. The data examined in the corridor suggest that the total demand does vary 
with weather conditions. The findings are summarized in table 30 and illustrated in figure 180. 
For daily travel, there is a significant drop in demand for rainy days and a less significant drop 
for drizzle days. 

Table 30. Summary of daily demand (October 10, 2012, to December 6, 2012). 
Attribute/ 
Weather 

Mixed Flow 
Vehicles 

HOV 
Vehicles 

Transit 
Persons 

Median Day Type 
Dry 80,739 10,944 14,736 
Drizzle 77,497 10,991 14,697 
Rain 73,479 10,102 14,515 
Percent—Standard Deviation ÷ Mean 
Dry 3 5 3 
Drizzle 1 4 1 
Rain 4 4 3 
Percent of Dry Days 
Dry 100 100 100 
Drizzle 96 100 100 
Rain 91 92 99 
Percent of Total Trips (not adjusted for auto occupancy) 
Dry 76 10 14 
Drizzle 75 11 14 
Rain 75 10 15 

Sources: DKS Associates, 2013 using data from WSDOT and Sound Transit. 
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Source: DKS Associates 

Figure 180. Graph. Summary of daily demand. 

Destination Choice 

The techniques applied did not produce results that indicated that information provided to 
travelers produced changes in destination choice. It is possible that daily reduction in travel 
could be due to destination choices, but it is more likely that trip cancellation created by more 
inertia not to travel was the cause of the observed travel reduction. 

Mode Choice 

The same data in figure 180 can be examined to suggest where daily mode choice changes might 
be occurring. There is clearly a reduction in traffic in mixed flow lanes, but corresponding 
increases in the daily demand in the HOV lane and in transit boardings are not demonstrated. 
This suggests that the primary reduction in activity is due to trip cancellation rather than shifting 
to another mode. Figure 181 summarizes the different mode shares for each type of day using 
medians from the various data sources. It should be noted that this figure does not account for the 
vehicle occupancies by mode, as these are not recorded in the analyzed datasets. 
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Source: DKS Associates 

Figure 181. Graph. Comparison of transit usage to Interstate 5 northbound traffic. 

Time of Day Choice 

The data presented in figure 180 for mixed flow traffic have been disaggregated for  
10-min periods throughout the day. The data for the median dry, drizzle, and rainy days are 
summarized by time-of-day in figure 182 through figure 184. To illustrate the magnitude of 
variability in each type of day, the graphs in the figures also include standard deviations. 
Because there are between 7 and 11 days included in the sampling, the applicability of the more 
statistically appropriate variable of 15 and 85 percent is not used. Instead, the standard deviation 
is used for illustrative purposes. 

The location in the corridor that was examined was south of the Swift Avenue/Albro Place  
off-ramp (Boeing Access Road off-ramp) at monitoring location mile post 157.42. At this 
location, the effects of queuing in the corridor often are not reflected in the traffic speeds 
recorded. Mixed flow and HOV volumes are combined at this location. 

Figure 182 shows a median dry day. As is apparent from the graph, the early morning conditions 
are relatively constant, exhibiting little variation. The highest volumes occur in the morning peak 
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period, with a maximum median of about 1,250 vehicles for the 10-min period (the morning 
peak period contains two peak volume periods as a result of arriving shift workers at nearby 
facilities). As the day progressed, some variability was observed later in the morning peak after 
9:00 a.m., suggesting that the end of the morning peak period had variable congestion and that 
vehicle flows responded to this. Slight variability continued through the remainder of the day. 
Traffic generally remained steady at about 800 to 900 vehicles during each 10-min period. This 
continued to about 5:30 p.m.  

 
Source: DKS Associates 

Figure 182. Graph. Median dry day volumes by time of day—south of Boeing Access Road 
off-ramp. 

As is shown in figure 183 for the median drizzle day, the overall traffic demand began to 
decrease, but this decrease was slight through most of the day. The demand appears much more 
variable, although the median is comparable for dry days for many of the time periods. The 
second highest morning peak traffic median at about 7:20 a.m. is shown to be well below  
1,200 vehicles. Another notable demand change is toward the end of the afternoon peak period. 
The median demand at 6:30 p.m. was about 700 vehicles for a 10-min period, while this was 
above 750 on dry days.  
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Source: DKS Associates 

Figure 183. Graph. Median drizzle day volumes by time of day—south of Boeing Access 
Road off-ramp. 

Rainy days showed significant decreases in demand as indicated in figure 184. The morning 
peak at about 6:30 a.m. had only about 900 vehicles for the 10-min period for mixed flow lanes. 
The median day showed volumes about or below 800 vehicles for much of the day, and the 
median demand time remained well under 800 vehicles for the 10-min period. The most notable 
demand change was toward the end of the afternoon peak period. An examination of the  
6:30 p.m. occurrences showed that a median rainy day had about 600 vehicles for a 10-min 
period, while this was over 650 vehicles for drizzle days and 700 vehicles on dry days. 
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Source: DKS Associates 

Figure 184. Graph. Median rainy day volumes by time of day—south of Boeing Access 
Road off-ramp. 

Path Choice 

As noted earlier, the ATMS activation appears to influence travel behavior. As the system was 
only visible to the drivers on the roadway, the effects of the ATMS would seem to be most 
directly related to path choice. 

To illustrate how this behavior varies, a comparison of the demand on the Interstate 5 north 
mainline at the first gantry, located south of the Martin Luther King, Jr. Way and the Boeing 
Access Road off-ramps (part of a larger complex interchange) were closely examined. This 
location represents the highest off-ramp activity on the southern portion of the study corridor. 
Combined, these off-ramps carry between 10 and 20 percent of all the upstream mainline traffic, 
with especially high proportions during the morning peak hour as it serves workers at Boeing 
Corporation’s Boeing Field facilities. 

The findings are graphically depicted in figure 185. November 12, 2012, showed relatively 
similar demand to the typical median drizzle day at this location. Most of the day, when the 
ATMS was not activated, the demands were similar between each kind of day. However, when 
the ATMS was activated in the morning and evening peak periods, the effects of the activation 
were mixed. In the morning, the activation did not appear to significantly impact the share of 
exiting traffic. In the afternoon peak period, the mere activation indicated that the message of 
traffic delays ahead resulted in an increase in off-ramp traffic above the maximum standard 
deviation and well above the median drizzle day. This is likely a result of morning peak period 
drivers needing to remain on Interstate 5 to reach destinations farther away or avoidance of high 
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off-ramp activity at the interchange. The afternoon peak period drivers may have had fewer time 
constraints or were going to destinations where other paths were more reasonable. 

 
Source: DKS Associates 

Figure 185. Graph. Percentage of off-ramp traffic comparing median and study drizzle 
day. 

Conclusions 

The following conclusions from this research illustrate how variability influences the way that 
freeway operations strategies work and that variability should be a component of traffic 
operations research from a behavioral perspective: 

• There was an overall reduction in traffic that occurred on rainy days that could not be 
predicted by travel forecasting models. This reduction could be from a variety of factors, 
with trip cancellation being the likely major factor. This is important when comparing 
effects of freeway management strategies, as weather influences on behavior may bias 
study findings unless the study compares days with similar weather. The data suggest 
sensitivity during the midday and evening time periods of about 10 to 15 percent for 
times during the day in each weather type. With this variability, data used in validating 
traffic volumes should indicate differences due to weather.  

• The effects of weather do not seem to influence HOV lane use or transit use in this 
corridor. The analysis in this case study suggests that weather has only a slight effect on 
mode choice for users of Interstate 5. This could be important as transit boardings can 
vary for many reasons, with weather not appearing to be a factor for the longer routes that 
operate in the corridor. While forecasting may generally need to consider variability, the 
longer distance mode choice in travel models appears to be less affected by weather than 
by other influences. Furthermore, drivers’ tendency to use the same mode and follow the 
same route day after day is not well understood. Understanding this traveler inertia could 
improve implementation of operational interventions.  
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• This corridor shows lower demand in rainy weather conditions generally across much of 
the day. When considering the first two conclusions, the reduction in demand seems to be 
attributable to persons choosing to cancel trips. Cancelled trips are most likely trips being 
made for purposes other than to work or college, so forecasting that considers variability 
may be most effective when examining non-work, non-college trips. 

• ATMS strategies appear to divert traffic in this corridor, but the effect is significant only 
at certain times. The success of a path diversion here appears to have greater effect when 
drivers have the option of leaving the freeway to arrive at their destination. Future 
intervention strategies similar to ATMS may need to consider the impact of route 
diversion, but the effect may or may not be important depending on the drivers’ ultimate 
destinations and their awareness of alternate paths.  

Limitations 

This specific case study provides the ability to intervene in real-time mode choice behavior, so 
this conclusion is reasonable when applied to this corridor. Its transferability to other corridors 
will need to be verified before an overall conclusion that mode choice is not a significant 
behavioral change can be made. 

The automated protocols established in an ATMS design are critical to its success, and the 
success in this corridor may be increased or decreased depending on the signage protocols and 
placements for ATMS activation. Testing of the automated protocols in this corridor will need to 
be examined more closely for sensitivity before it is clear what system works most effectively.  

Recommended Next Steps and Research in ICM/ATIS 

Forecasting methods can be enhanced by incorporating occurrences of variability in the system 
in some way to reflect variability in influencing factors such as weather rather than relying solely 
on average behaviors. Travel diaries or GPS travel survey tools for household travel behavior 
can be expanded to examine the effects on trip generation rates. Furthermore, APC system data 
can be helpful in examining mode share issues further in corridors. This may be appropriate to 
focus on the proportions of trips that normally occur at those times, particularly non-work, non-
college, and non-home-based trips. 

Sensitivity studies on automated protocols yield how successful they are. Research should focus 
on similar types of days as weather affects demand. Measuring traveler awareness of alternatives 
is important not only for understanding their choices and experience, but also for capturing the 
influence of experience travelers in their social networks (see chapter 6).  
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CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 

This chapter provides an overall summary of the activities undertaken as part of the study, 
highlights the principal accomplishments contributed through the work undertaken in 
conjunction with this effort, extracts the main lessons learned, and provides suggestions for next 
steps intended to advance the state of the art and practice in modeling traveler choice for the 
purpose or analysis and evaluation of operational and policy interventions. 

SUMMARY AND ACCOMPLISHMENTS 

The goal of this study was to address the important gap in modeling capability to support a 
variety of initiatives that seek to improve traffic conditions, system safety, and sustainability by 
targeting user choices before and during travel. The main emphasis of this effort was on 
travelers’ higher-level predictive strategic choices because these might be influenced by a  
range of variables including experienced system performance through the level of service, 
environmental factors such as weather that affect both system performance as well as activity 
engagement opportunities, availability and accessibility to alternative modes, quality of the 
walking environment, as well as measures such as pricing, information supply, dynamic traffic 
management, etc. A thorough understanding of the determinants of travel choices and behavior 
and an operational ability to model their dependence on key attributes of the transportation 
system, network performance, as well as non-network factors, will provide a foundation for 
designing effective interventions to improve system performance and for evaluating different 
policies and options by predicting how users will respond to these measures. 

This broad goal was first supported through a literature review of network and non-network 
factors influencing travel behavior in the short, medium, and long terms. In a way, the scope of 
the present effort covers the entire realm of transportation systems analysis, planning, and 
operations. A comprehensive conceptual framework was articulated to highlight the principal 
behavior dimensions and how these interrelate with network performance to determine the 
impact and effectiveness of a wide range of demand-side and supply-side measures. While the 
framework provides the structure of a modeling capability to address this wide range of possible 
questions, no single modeling platform can have both the scale and the appropriate level of detail 
and focus to address all questions and interventions. In any modeling exercise, some aspects of 
the system, including traveler decisions, are considered given and fixed, while others are allowed 
to change and respond to the particular measures under consideration. Physicists have long 
differentiated between slow-changing and fast-changing dynamics, each requiring different 
modeling approaches and data observations. Accordingly, this study sought to demonstrate 
opportunities for improving modeling capabilities with respect to various policy and operational 
interventions by defining selected case studies. For each case study or scenario, specific 
modeling tools were elaborated by integrating traveler choice models in system simulation tools 
and demonstrated to evaluate the effectiveness of the relevant interventions. 

The case studies ranged from long-term policy influences of non-network interventions (i.e., 
walkability and crime) on mode choice to short-term en-route behavior of speed compliance as 
part of INFLO speed harmonization measures. To cover these different time frames of user 
behavior adjustments to management and policy strategies, different models were developed, as 
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no single modeling approach fits all purposes. Moreover, all cases model and treat individual 
behavior in a completely disaggregated manner. However, depending on the focus of the 
intervention, scale of application and resulting size of the problem, the case study models range 
from macroscopic to microscopic representation. Where predictive capabilities were needed, 
well-calibrated statistical models were used. In the case of speed harmonization, the physics of 
the simulation became of primary importance, and detailed microsimulation tools were used to 
simulate the user behavior and the associated interactions in the traffic stream. What became 
clear through all of the case studies is that information and how information is processed is the 
primary consideration for most of the management strategies. Current statistical models are 
limited in the way they model the diffusion and processing of information in a connected world. 
For that purpose, an agent-based model was developed to demonstrate how different processes 
could be implemented to represent information and attitude diffusion processes. Each of the case 
studies is summarized in the following subsections. 

Urban Policy and Non-Network Interventions Case Study 

Early studies of land use and travel behavior focused on hypothesis testing regarding the 
correlation between built environment and travel. The debate about causality of observed 
correlations is ongoing. Despite the large number of existing studies, the magnitude of the effects 
of built environment on travel behavior, specifically mode choice, is unclear. Instead of treating 
land use in broader categories, this case study analyzed the direct causal relationship of safety 
perception and walkability on mode choice for the first time. The influence of walkability and 
safety perception was included in an extensive mode choice model as latent variables to 
complement all the standard variables such as level of service and demographic variables. In 
addition, the mode choice model included time-varying level of service attributes. 

The case study demonstrates how available data sources can be tapped, reconciled, and 
implemented into available model structures. It also shows the significant influence of 
disaggregated non-network factors on mode choice. 

ATDM Case Study 

This case study focused on identifying information and data that can inform understanding of the 
factors underlying traveler choices to use bicycling as an active transportation mode and the 
development of models of bicycle mode shift and usage patterns that may be incorporated in 
regional and operational travel demand forecasting frameworks. The examination included a 
review of information and data collected by local areas in regional case studies consisting of the 
following four urban metropolitan regions: Washington, DC, metropolitan region, Southern 
California metropolitan region (SCAG region), San Francisco Bay area, and the Cleveland, OH, 
region. Data collected from these regions confirm that bicycle travel is increasing both as an 
active transportation mode and as a means of travel demand management. However, bicycle 
travel supply and demand variables collected by local agencies vary considerably in quality and 
robustness. While leading edge travel demand modeling agencies are beginning to integrate 
bicycle use data into travel forecasting, significant data gaps limit the ability to fully incorporate 
bicycling choice and use in activity-based models of travel demand. 
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Examples from the four metropolitan study areas were presented, focusing on overall bicycle use 
and limited evidence for potential modal shift in connection with bike on transit service options 
and bike sharing plans. The importance of factors such as weather in bicycle use decisions is 
strongly evident through the available data. Recommended data needed to advance the state of 
the art and the practice were identified and presented.  

AERIS Case Study I: Social Networks and Green Behaviors 

Attitudes and information can influence individuals’ choices on many different levels, but little is 
known on how information disseminates and attitudes are formed. Management strategies aim to 
influence user behavior. As a result, attitudes cannot be treated as static and given. This case 
study developed an agent-based model of information diffusion and attitude formation. The 
model includes the following three main models: 

• Social network model: Lattice neighborhood network, where the home location is 
modeled as a function of social class and where the initial attitude is also a function of 
social class. 

• Communication condition: The more similar two agents are, the more likely they are to 
communicate. The similarity attributes are defined on the basis of social class, innovation 
adopter status, and current attitudes. 

• Opinion revision process: This process is based in an impedance function with three 
trigger mechanisms: class type similarity, opinion leader or follower status, and inertia 
(status quo mechanism). 

Experiments conducted with the developed model demonstrated how the effectiveness of 
targeted information campaigns to change behavior could be assessed through their impact on 
opinion and attitude formation and change through agent interaction, word of mouth, and/or 
social media. 

AERIS Case Study II: INFLO and Speed Compliance 

Connected vehicle technology enables improvements in flow quality, safety, and sustainability 
through better driver decisions. Speed harmonization, like ramp metering or VMSs, requires 
drivers to comply with the advised policy in order to be effective. This case study models speed 
harmonization and its effect on the system performance and examines its robustness in relation to 
driver compliance behavior. 

The individuals’ behavior was simulated with an acceleration and episode duration model. A 
shockwave detection algorithm was implemented to trigger speed harmonization in real time.  
By incorporating and calculating emissions based on the motor vehicle emission simulator, the 
impact of speed harmonization on emissions, in addition to travel time and flow quality, was 
modeled and demonstrated for a real-world scenario. The study shows that with a compliance 
level of around 20 percent, nearly the full benefit from speed harmonization can be achieved. 
The results indicate that even low levels of compliance with the suggested speed limit are 
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sufficient for the near-success of the system. However, the minimum required compliance level 
varies based on the geometric characteristics of the highway segment and its flow rate. 

WRTM Case Study 

This case study investigated WRTM strategies in terms of their impact on flows and service 
levels in the network and how demand management strategies can help maintain acceptable 
levels of service in the transportation network during bad weather conditions. In order to do so, 
mode choice, departure time choice, trip cancellation, and trip shifts were studied and included in 
a simulation of the Chicago, IL, network. Nine combinations of these different choice levels 
were analyzed to recommend a mix of strategies. 

Whereas during bad weather a travel time increase of 27 percent was simulated, it was 
demonstrated that the level of service during bad weather could be improved to the same level of 
service as during clear weather conditions by decreasing the demand by around 15 to 20 percent. 
The study showcased that such a demand decrease could be achieved by promoting alternative 
modes and policy interventions. A combination of information about expected bad weather travel 
time reaching 50 percent of travelers, and policies of delayed school openings are able to achieve 
about 18 percent demand reduction. 

These results depict a comprehensive list of demand management and policy strategy scenarios 
evaluated in this study and the corresponding improvement for network-wide travelers. In 
general, strategies that target mode choice as well as effective policies that target peak spreading 
have good potential to improve the cost and reliability of travel by reducing travel time. 

ICM Case Study 

The last case study analyzed data from the Interstate 5 corridor in Seattle, WA, which is 
managed by an automated ATMS along the corridor. The case study provides a summary of how 
information interventions are related to travel behavior variability. 

In the corridor, the following phenomena were observed, confirming the importance of 
understanding behavioral responses of travelers to management interventions: 

• This corridor shows lower demand in rainy weather conditions generally across much of 
the day, which means that cancelled trips are most likely trips being made for purposes 
other than work or college. 

• The effects of weather do not seem to influence HOV lane use or transit use in  
this corridor. 

• ATMS strategies appear to divert traffic in this corridor, but the effect is significant only 
at certain times. The success of a path diversion appears to have greater effect when 
drivers have the option of leaving the freeway to arrive at their destination. 
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LESSONS LEARNED AND NEXT STEPS 

Lessons learned from these case studies include the following: 

• There is no “one-size fits all” model. This study covered considerable ground in terms of 
both models and applications. The multidisciplinary domain of travel behavior and travel 
choice modeling is vast, and its relevance spans the near entirety of the realm of 
transportation planning, operations, design, policy, and economics. Accordingly, it is 
challenging to cover the entire territory of travel behavior as an integrated coherent 
domain. As the state of the art survey and synthesis of practice conducted in the first 
phase of this study confirmed, models developed for different purposes tend to have 
different representations of traveler choice processes—from which choice dimensions are 
included, to how those are specifically modeled, to the widely varying extent of data 
availability for model development and model application, to the degree to and manner 
by which these behavior models are integrated or otherwise incorporated in overall model 
systems of frameworks, to the confidence placed in these models in actual policy 
applications. There is a plethora of individual models of one or the other aspect of travel 
behavior that have been captured for one application or academic exercise, but very few 
examples of comprehensive and convincingly calibrated activity-based model systems or 
attempts to build these onto integrated and internally consistent network analysis 
platforms. Fragmentation will likely remain, with different models developed at different 
resolutions and customized for particular types of applications, although a definitive trend 
is observed and will continue toward increasing the behavioral content and realism of 
models applied for operational planning purposes.  

• What is common across all these models and applications is that traveler choices and 
behavioral responses are modeled at the individual level. So long as model platforms 
allow such representation, the behavioral richness of the models can be improved and 
enhanced over time as more data becomes available and the state of the art of behavioral 
modeling itself continues to improve. However, the challenges in handling new 
behavioral models in existing model platforms arise from the need to incorporate  
attribute values in the choice models (e.g., in the utility functions or generalized costs) 
that themselves depend on the collective choices of the users or that require finding 
certain paths in the network that satisfy properties that require entirely new path- 
finding algorithms. 

• There exists a good range of modeling frameworks and tools to incorporate user choices 
in the analysis and evaluation of many interventions aimed at improving operations and 
enhancing the sustainability of our transportation systems. This study successfully 
illustrated several of these tools in connection with both short-, medium-, and longer- 
term interventions. 

• Not surprisingly, the reliability of the tools is greater for shorter-term and operational 
planning interventions, as fewer choice dimensions are involved in a primary manner, 
and base conditions are known. However, as the time horizon increases, the ability of 
tools to help forecast the impact of different policies diminishes, as many other factors 
and inputs are changing as well. The dilemma that modelers face in this situation is 
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between seeking to capture the myriad complexities and interactions that exist at the 
micro level or seeking simpler models and structures that are allow the modeler to better 
grasp and convey key trade-offs in the contemplated policy choices. 

• While powerful modeling and simulation frameworks were demonstrated, the available 
data and observational bases to calibrate and gain confidence in these tools are 
inadequate. This is especially true with regard to understanding and modeling the 
dynamics of individual choices in congested systems that are subject to disruptions, 
variability, or dynamic control strategies such as pricing and real-time information. No 
other field of scientific investigation has underinvested to this degree, in relative terms to 
the costs of the projects, programs and societal costs in observing and measuring how 
people use the systems that are built and designed. It is imperative that all demonstration 
projects of connected vehicles, DMAs, advanced system management, etc. include a 
behavioral study component that is accorded the same level of importance as the 
technological and engineering features of the projects and is integrated in the very design 
of the program rather than added as an afterthought.  

• There is widespread recognition that new technologies are enabling, and will do so to an 
even greater degree in the future, new ways to measure and track individual choices. 
While this goes a long way toward observing actual choices, it is important to recognize 
that such data would not be sufficient to develop useful behavioral models. The latter 
require context, and a more complete characterization of the alternatives available to the 
individual. Therefore, one should not become complacent in this regard and assume that 
cell phones will capture and convey all the information needed to develop behavioral 
models. Nonetheless, the transportation domain is seriously lagging other domains when 
it comes to mining and leveraging the very vast data that are accumulating through such 
non-traditional sources, such as cell phones, Internet transactions, as well as video images 
of the transportation system itself (e.g., at train stations and on many highways and 
intersections). 

• New technologies (e.g., smart applications or innovative technologies for collecting 
traveler behavior) can help, but there are caveats. There is a need to incorporate personal 
surveys to query respondents on their motivations, intentions, and willingness to change 
behavior as well as to track actual behavior into management and infrastructure projects. 
Such surveys can be incorporated together with new technologies that track users 
anonymous to enhance such data with more behavioral richness. 

• New transportation measures and technology-facilitated system operational interventions 
create new situations that may not yet have real-world counterparts. As a result, there 
may not be opportunities to observe traveler behavioral responses to such interventions. 
Furthermore, a real-world demonstration project can generally only implement one 
particular version among several completing designs. Laboratory experiments have 
traditionally been proposed as an approach to learn about user behavior in controlled 
settings, and, in fact, such experiments conducted in the past three decades have provided 
much of the knowledge gained about the dynamics of route and departure time choice 
behavior of users. Improvements in simulated worlds and gaming technology provide  
an entirely new level of possibilities to learn about user behavior in a variety of 
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environments under different types of interventions. This remains a largely untapped and 
promising arena for travel behavior research aimed at understanding user choices.  

• No matter how rich and complete models are, the behavior of users will remain a moving 
target for many interventions. People by nature adapt and change due to external factors 
(i.e., the economy, lifestyles, shifting preferences, etc.) as well as factors internal to the 
transportation system, including the kinds of dynamically changing interventions 
motivating the present study (e.g., information, prices, controls, etc.). While modeling the 
mechanisms underlying such behavioral adaptation remains an important part of the 
research agenda for the travel behavior community, it is important to recognize such 
adaptation and evolution in the very design of the interventions. This calls for a new 
paradigm in designing and implementing interventions in which learning about user 
behavior becomes an integral element of the system, and adapting and fine-tuning the 
policies are considered by design. 

Next Steps 

In terms of next steps for advancing the underlying body of knowledge and toolkit available to 
understand and represent traveler choice behavior in simulation and analysis tools, the priority 
and opportunity areas identified by the expert panels convened in the first phase of this study 
provide a blueprint for a research agenda for the field.  

In terms of capturing and modeling behavioral phenomena, the following items are important in 
terms of addressing critical knowledge gaps and are particularly relevant from the standpoint of 
the interventions of interest while being amenable to significant practical advances:  

• Inertia, habit formation, and attitudes. 

• Mechanisms, operating at the cognitive level that govern information processing, 
communication, and other phenomena that affect an individual’s propensity for behavior 
change (e.g., toward more sustainable practices (especially relevant to AERIS)). 

• Learning and dynamics, especially in response to information from multiple sources, 
including social networks as well as experience in a variety of contexts. 

• Evolutionary responses from short-term adjustments to long-term patterns. 

With regard to methods for studying and modeling behavior, the following items are  
of importance: 

• Available methods for model development and specification have seen considerable 
advances; however, practice is lagging behind theory and methodological developments. 

• Existing methods have not been tested with big data yet. Most methods, especially the 
more sophisticated ones, are still applied to smaller scale samples and surveys, not 
massive volumes of transaction data or fine-grained geo- and time-referenced data. 
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• Other fields (e.g., marketing) have seen a transition toward a new generation of more 
automated methods (e.g., data mining) aimed at extracting knowledge and prediction 
from large datasets. As transaction data from fare cards, social media, tracking devices, 
etc. become commonplace, the travel behavior field needs to broaden its range of tools.  
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APPENDIX. COMPLETE LIST OF EXAMINED VARIABLES FOR NON-NETWORK 
MODEL 

This appendix provides definitions for all examined variables in the non-network model. 

Table 31. Variables and their definitions. 
Variable Definition 

Trip ID Unique ID for each recorded trip 
SAMPN Unique household ID 
PERNO Person ID within a household 
PLANO Trip plan ID for each person 
MODE Chosen trip mode 

1. Walk 
2. Bike 
3. Auto/van/truck driver 
4. Auto/van/truck passenger 
5. CTA bus 
6. CTA train 
7. PACE bus 
8. Metra train/South Shore Railroad 
9. Private shuttle bus 
10. Dial a ride/para-transit 
11. Taxi 
12. Local transit (NIRPC region) 
97. Other, specify 
98. Don’t know 
99. Refused 

DISTANCE Trip distance. 
auto_cost Traveling cost by auto. 
bus_cost Traveling cost by bus (CTA and Pace). 
cta_rail_cost Traveling cost by CTA. 
metra_cost Traveling cost by Metra. 
walk_cost Traveling cost by walking (assumed to be zero). 
bike_cost Traveling cost by biking (assumed to be zero). 
auto_tt If auto is the chosen mode, then auto_tt = reported travel time in 

the survey. Otherwise, auto_tt is obtained from time-dependent 
origin-destination travel times estimated by a DTA model 
(DYNASMART). 

bus_tt If bus (either CTA or PACE) is the chosen mode, the bus_tt = 
reported travel time in the survey. Otherwise, bus_tt is 
estimated using an average bus speed obtained from the 
Household Travel Survey. 
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cta_rail_tt If CTA train is the chosen mode, the cta_rail_tt = reported 
travel time in the survey. Otherwise, cta_rail_tt is estimated 
using an average CTA train speed obtained from the Household 
Travel Survey. 

metra_tt If Metra is the chosen mode, the metra_tt = reported travel time 
in the survey. Otherwise, metra_tt is estimated using an average 
Metra speed obtained from the Household Travel Survey. 

walk_tt If walking is the chosen mode, the walk_tt = reported travel 
time in the survey. Otherwise, walk_tt is estimated using an 
average walking speed obtained from the Household Travel 
Survey. 

bike_tt If biking is the chosen mode, the bike_tt = reported travel time 
in the survey. Otherwise, bike_tt is estimated using an average 
biking speed obtained from the Household Travel Survey. 

dep_hour Departure time from origin (hour). 
dep_minute Departure time from origin (minute). 
arr_hour Arrival time at destination (hour). 
arr_minute Arrival time at destination (minute). 
act_dur Activity duration (minute). 
or_loc Origin location ID (approximate). 
or_zone07 Origin TAZ (consistent with CMAP and DYNASMART 

zoning). 
des_loc Destination location ID (approximate). 
des_zone07 Destination TAZ (consistent with CMAP and DYNASMART 

zoning). 
OR_GN_PURP Origin purpose: 

• Home. 
• Work. 
• School. 
• Other. 

DES_GN_PURP Destination purpose: 
• Home. 
• Work. 
• School. 
• Other. 

purpose Trip purpose: 
• HBW. 
• HBSch. 
• HBO. 
• NHB. 
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Income_level Household annual income: 
1. Less than $20,000. 
2. $20,000–$34,999. 
3. $35,000–49,999. 
4. $50,000–$59,999. 
5. $60,000–$74,999. 
6. $75,000–$99,999. 
7. More than $100,000. 
9. Refused. 

Income Household annual income (a value from the associated bin is 
randomly drawn and assigned). 

AGE Age of the traveler. 
DISAB Dummy variable for disability status of the traveler: 

1. Disabled. 
2. Not disabled. 

HHVEH Number of vehicles in the household. 
HHSIZE Number of persons in the household. 
HHWRK Number of workers in the household. 
O_MixDiversity1Mile Land use mix diversity index at origin (see figure 17). The mix 

diversity index is zero if land use is completely homogenous 
with only one class. The mix diversity index is one if land use is 
fully mixed with equal proportion of all included land use 
classes. 

O_MixDiversity0.5Mile Land use mix diversity index at origin (0.5-mi circle) 
O_MixDiversity0.25Mile Land use mix diversity index at origin (0.25-mi circle) 
O_ResComm0.25Mile Dummy variable for mixed use development at origin 

(residential + commercial) for 0.25-mi circle (1 = mixed use 
developed, 0 = not mixed use developed). 

O_ResCommInst0.25Mile Dummy variable for mixed use development at origin 
(residential + commercial + institutional) for 0.25-mi circle  
(1 = mixed use developed, 0 = not mixed use developed). 

O_ResCommInstInds0.25Mile Dummy variable for mixed use development at origin 
(residential + commercial + institutional + industrial) for  
0.25-mi circle (1 = mixed use developed, 0 = not mixed use 
developed). 

O_ResComm0. 5Mile Dummy variable for mixed use development at origin 
(residential + commercial) for 0.5-mi circle (1 = mixed use 
developed, 0 = not mixed use developed). 

O_ResCommInst0.5Mile Dummy variable for mixed use development at origin 
(residential + commercial + institutional) for 0. 5-mi circle  
(1 = mixed use developed, 0 = not mixed use developed). 

O_ResCommInstInds0.5Mile Dummy variable for mixed use development at origin 
(residential + commercial + institutional + industrial) for  
0.5-mi circle (1 = mixed use developed, 0 = not mixed use 
developed). 
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O_ResComm1Mile Dummy variable for mixed use development at origin 
(residential + commercial) for 1-mi circle (1 = mixed use 
developed, 0 = not mixed use developed). 

O_ResCommInst1Mile Dummy variable for mixed use development at origin 
(residential + commercial + institutional) for 1-mi circle  
(1 = mixed use developed, 0 = not mixed use developed). 

O_ResCommInstInds1Mile Dummy variable for mixed use development at origin 
(residential + commercial + institutional + industrial) for  
1-mi circle (1 = mixed use developed, 0 = not mixed use 
developed). 

D_MixDiversity1Mile Land use mix diversity index at destination (1-mi circle). 
O_MixDiversity0.5Mile Land use mix diversity index at destination (0.5-mi circle). 
O_MixDiversity0.25Mile Land use mix diversity index at destination (0.25-mi circle). 
D_ResComm0.25Mile Dummy variable for mixed use development at destination 

(residential + commercial) for 0.25-mi circle (1 = mixed use 
developed, 0 = not mixed use developed). 

D_ResCommInst0.25Mile Dummy variable for mixed use development at destination 
(residential + commercial + institutional) for 0.25-mi circle  
(1 = mixed use developed, 0 = not mixed use developed). 

D_ResCommInstInds0.25Mile Dummy variable for mixed use development at destination 
(residential + commercial + institutional + industrial) for  
0.25-mi circle (1 = mixed use developed, 0 = not mixed use 
developed). 

D_ResComm0. 5Mile Dummy variable for mixed use development at destination 
(residential + commercial) for 0.5-mi circle (1 = mixed use 
developed, 0 = not mixed use developed). 

D_ResCommInst0.5Mile Dummy variable for mixed use development at destination 
(residential + commercial + institutional) for 0. 5-mi circle  
(1 = mixed use developed, 0 = not mixed use developed). 

D_ResCommInstInds0.5Mile Dummy variable for mixed use development at destination 
(residential + commercial + institutional + industrial) for  
0.5-mi circle (1 = mixed use developed, 0 = not mixed use 
developed). 

D_ResComm1Mile Dummy variable for mixed use development at destination 
(residential + commercial) for 1-mi circle (1 = mixed use 
developed, 0 = not mixed use developed). 

D_ResCommInst1Mile Dummy variable for mixed use development at destination 
(residential + commercial + institutional) for 1-mi circle  
(1 = mixed use developed, 0 = not mixed use developed). 

D_ResCommInstInds1Mile Dummy variable for mixed use development at destination 
(residential + commercial + institutional + industrial) for  
1-mi circle (1 = mixed use developed, 0 = not mixed use 
developed). 

O_Walk_score Walk score at origin. 
O_Transit_score Transit score at origin. 
D_Walk_score Walk score at destination. 
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D_Transit_score Transit score at destination. 
O_CTA_train_0.25 Dummy variable for CTA train accessibility at origin (1 = 

transit accessible, 0 =not transit accessible) for 0.25-mi circle. 
O_CTA_train_0.5 Dummy variable for CTA train accessibility at origin (1 = 

transit accessible, 0 = not transit accessible) for 0.5-mi circle. 
O_CTA_train_0.75 Dummy variable for CTA train accessibility at origin (1 = 

transit accessible, 0 = not transit accessible) for 0.75-mi circle. 
O_CTA_train_1 Dummy variable for CTA train accessibility at origin (1 = 

transit accessible, 0 = not transit accessible) for 1-mi circle. 
O_CTA_bus_0.25 Dummy variable for CTA bus accessibility at origin (1 = transit 

accessible, 0 = not transit accessible) for 0.25-mi circle. 
O_CTA_bus_0.5 Dummy variable for CTA bus accessibility at origin (1 = transit 

accessible, 0 = not transit accessible) for 0.5-mi circle. 
O_CTA_bus_0.75 Dummy variable for CTA bus accessibility at origin  

(1 = transit accessible, 0 = not transit accessible) for  
0.75-mi circle. 

O_CTA_bus_1 Dummy variable for CTA bus accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 1-mi circle. 

O_CTA_Metra_0.25 Dummy variable for Metra accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 0.25-mi circle. 

O_CTA_ Metra _0.5 Dummy variable for Metra accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 0.5-mi circle. 

O_CTA_ Metra _0.75 Dummy variable for Metra accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 0.75-mi circle. 

O_CTA_ Metra _1 Dummy variable for Metra accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 1-mi circle. 

O_CTA_Pace_0.25 Dummy variable for Pace accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 0.25-mi circle. 

O_CTA_ Pace _0.5 Dummy variable for Pace accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 0.5-mi circle. 

O_CTA_ Pace _0.75 Dummy variable for Pace accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 0.75-mi circle. 

O_CTA_ Pace _1 Dummy variable for Pace accessibility at origin (1 = transit 
accessible, 0 = not transit accessible) for 1-mi circle. 

D_CTA_train_0.25 Dummy variable for CTA train accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.25-mi 
circle. 

D_CTA_train_0.5 Dummy variable for CTA train accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.5-mi 
circle. 

D_CTA_train_0.75 Dummy variable for CTA train accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.75-mi 
circle. 

D_CTA_train_1 Dummy variable for CTA train accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 1-mi circle. 
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D_CTA_bus_0.25 Dummy variable for CTA bus accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.25-mi 
circle. 

D_CTA_bus_0.5 Dummy variable for CTA bus accessibility at destination (1 = 
transit accessible, 0 = not transit accessible) for 0.5-mi circle. 

D_CTA_bus_0.75 Dummy variable for CTA bus accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.75-mi 
circle. 

D_CTA_bus_1 Dummy variable for CTA bus accessibility at destination (1 = 
transit accessible, 0 = not transit accessible) for 1-mi circle. 

D_CTA_Metra_0.25 Dummy variable for Metra accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.25-mi 
circle. 

D_CTA_ Metra _0.5 Dummy variable for Metra accessibility at destination (1 = 
transit accessible, 0 = not transit accessible) for 0.5-mi circle. 

D_CTA_ Metra _0.75 Dummy variable for Metra accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.75-mi 
circle. 

D_CTA_ Metra _1 Dummy variable for Metra accessibility at destination (1 = 
transit accessible, 0 = not transit accessible) for 1-mi circle. 

D_CTA_Pace_0.25 Dummy variable for Pace accessibility at destination  
(1 = transit accessible, 0 = not transit accessible) for 0.25-mi 
circle. 

D_CTA_ Pace _0.5 Dummy variable for Pace accessibility at destination (1 = transit 
accessible, 0 = not transit accessible) for 0.5-mi circle. 

D_CTA_ Pace _0.75 Dummy variable for Pace accessibility at destination (1 = transit 
accessible, 0 = not transit accessible) for 0.75-mi circle. 

D_CTA_ Pace _1 Dummy variable for Pace accessibility at destination (1 = transit 
accessible, 0 = not transit accessible) for 1-mi circle. 

O_Violent_0_25 Number of violent crimes occurring from 2005–2008 in the 
0.25-mi radius of the origin latitude and longitude. 

O_Violent_0_50 Number of violent crimes occurring from 2005–2008 in the 
0.50-mi radius of the origin latitude and longitude. 

O_Violent_0_75 Number of violent crimes occurring from 2005–2008 in the 
0.75-mi radius of the origin latitude and longitude. 

O_Violent_1 Number of violent crimes occurring from 2005–2008 in the  
1-mi radius of the origin latitude and longitude. 

O_Index_0_25 Number of index crimes occurring from 2005–2008 in the  
0.25-mi radius of the origin latitude and longitude. 

O_Index_0_50 Ibid., 0.50-mi radius. 
O_Index_0_75 Ibid., 0.75-mi radius. 
O_Index_1 Ibid., 1-mi radius. 
O_NonIndex_0_25 Number of non-index crimes occurring from 2005–2008 in the 

0.25-mi radius of the origin latitude and longitude. 
O_NonIndex_0_50 Ibid., 0.50-mi radius. 
O_NonIndex_0_75 Ibid., 0.75-mi radius. 
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O_NonIndex_1 Ibid., 1-mi radius. 
O_IndexTransit_0_25 Number of index crimes occurring from 2005–2008 at transit 

stations/shelters in the 0.25-mi radius of the origin latitude and 
longitude. 

O_IndexTransit_0_5 Ibid., 0.50-mi radius. 
O_IndexTransit_0_75 Ibid., 0.75-mi radius. 
O_IndexTransit_1 Ibid., 1-mi radius. 
O_Prop_0_25 Number of property crimes occurring from 2005–2008 in the 

0.25-mi radius of the origin latitude and longitude. 
O_Prop_0_5 Ibid., 0.50-mi radius. 
O_Prop_0_75 Ibid., 0.75-mi radius. 
O_Prop_1 Ibid., 1-mi radius. 
D_Violent_0_25 Number of violent crimes occurring from 2005–2008 in the  

0.25-mi radius of the destination latitude and longitude. 
D_Violent_0_50 Number of violent crimes occurring from 2005–2008 in the  

0.50-mi radius of the destination latitude and longitude. 
D_Violent_0_75 Number of violent crimes occurring from 2005–2008 in the  

0.75-mi radius of the destination latitude and longitude. 
D_Violent_1 Number of violent crimes occurring from 2005–2008 in the  

1-mi radius of the destination latitude and longitude. 
D_Index_0_25 Number of index crimes occurring from 2005–2008 in the  

0.25-mi radius of the destination latitude and longitude. 
D_Index_0_50 Ibid., 0.50-mi radius. 
D_Index_0_75 Ibid., 0.75-mi radius. 
D_Index_1 Ibid., 1-mi radius. 
D_NonIndex_0_25 Number of non-index crimes occurring from 2005–2008 in the 

0.25-mi radius of the destination latitude and longitude. 
D_NonIndex_0_50 Ibid., 0.50-mi radius. 
D_NonIndex_0_75 Ibid., 0.75-mi radius. 
D_NonIndex_1 Ibid., 1-mi radius. 
D_IndexTransit_0_25 Number of index crimes occurring from 2005–2008 at transit 

stations/shelters in the 0.25-mi radius of the destination latitude 
and longitude. 

D_IndexTransit_0_5 Ibid., 0.50-mi radius. 
D_IndexTransit_0_75 Ibid., 0.75-mi radius. 
D_IndexTransit_1 Ibid., 1-mi radius. 
D_Prop_0_25 Number of property crimes occurring from 2005–2008 in the 

0.25-mi radius of the destination latitude and longitude 
D_Prop_0_5 Ibid., 0.50-mi radius. 
D_Prop_0_75 Ibid., 0.75-mi radius. 
D_Prop_1 Ibid., 1-mi radius. 
OR_Housing_1 Number of housing units at origin (1-mi circle). 
OR_Pop_1 Population (head counts) at origin (1-mi circle). 
OR_Jobs_1 Number of jobs at origin (1-mi circle). 
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OR_Area_1 Associated area at origin (1-mi circle). This area is slightly 
different from the area of a perfect circle because it is the sum 
of the areas of the census tracts located within the circle. 

DES_Housing_1 Number of housing units at destination (1-mi circle). 
DES_Pop_1 Population (head counts) at destination (1-mi circle). 
DES_Jobs_1 Number of jobs at destination (1-mi circle). 
DES_Area_1 Associated area at destination (1-mi circle).  
OR_Housing_0.75 Number of housing units at origin (0.75-mi circle). 
OR_Pop_0.75 Population (head counts) at origin (0.75-mi circle). 
OR_Jobs_0.75 Number of jobs at origin (0.75-mi circle). 
OR_Area_0.75 Associated area at origin (0.75-mi circle).  
DES_Housing_0.75 Number of housing units at destination (0.75-mi circle). 
DES_Pop_0.75 Population (head counts) at destination (0.75-mi circle). 
DES_Jobs_0.75 Number of jobs at destination (0.75-mi circle). 
DES_Area_0.75 Associated area at destination (0.75-mi circle).  
OR_Housing_0.5 Number of housing units at origin (0.5-mi circle). 
OR_Pop_0.5 Population (head counts) at origin (0.5-mi circle). 
OR_Jobs_0.5 Number of jobs at origin (0.5-mi circle). 
OR_Area_0.5 Associated area at origin (0.5-mi circle).  
DES_Housing_0.5 Number of housing units at destination (0.5-mi circle). 
DES_Pop_0.5 Population (head counts) at destination (0.5-mi circle). 
DES_Jobs_0.5 Number of jobs at destination (0.5-mi circle). 
DES_Area_0.5 Associated area at destination (0.5-mi circle). 
OR_Housing_0.25 Number of housing units at origin (0.25-mi circle). 
OR_Pop_0.25 Population (head counts) at origin (0.25-mi circle). 
OR_Jobs_0.25 Number of jobs at origin (0.25-mi circle). 
OR_Area_0.25 Associated area at origin (0.25-mi circle).  
DES_Housing_0.25 Number of housing units at destination (0.25-mi circle). 
DES_Pop_0.25 Population (head counts) at destination (0.25-mi circle). 
DES_Jobs_0.25 Number of jobs at destination (0.25-mi circle). 
DES_Area_0.25 Associated area at destination (0.25-mi circle).  
Bike Number of bicycles in the households. 
travel_time_index Travel time index equals actual travel time divided by free-flow 

travel time. Free-flow travel times are obtained from a DTA 
Model (DYNASMART) and actual travel time is the “auto_tt.”  

DTA_travel_time_index DTA travel time index equals DTA travel time divided by free-
flow travel time. Free-flow travel times and DTA travel times 
are both obtained from a DTA Model (DYNASMART). 

OR_PopDensity_1 Population density at origin (1-mi circle). 
OR_JobDensity_1 Job density at origin (1-mi circle). 
DES_PopDensity_1 Population density at destination (1-mi circle). 
DES_JobDensity_1 Job density at destination (1-mi circle). 
OR_PopDensity_0.75 Population density at origin (0.75-mi circle). 
OR_JobDensity_0.75 Job density at origin (0.75-mi circle). 
DES_PopDensity_0.75 Population density at destination (0.75-mi circle). 
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DES_JobDensity_0.75 Job density at destination (0.75-mi circle). 
OR_PopDensity_0.5 Population density at origin (0.5-mi circle). 
OR_JobDensity_0.5 Job density at origin (0.5-mi circle). 
DES_PopDensity_0.5 Population density at destination (0.5-mi circle). 
DES_JobDensity_0.5 Job density at destination (0.5-mi circle). 
OR_PopDensity_0.25 Population density at origin (0.25-mi circle). 
OR_JobDensity_0.25 Job density at origin (0.25-mi circle). 
DES_PopDensity_0.25 Population density at destination (0.25-mi circle). 
DES_JobDensity_0.25 Job density at destination (0.25-mi circle). 
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